Ry

STRUCTURING

Eric C.R. Hehner
University of Toronto

Abstract: Structuring can be defined inde-
pendently of what is being structured, and can be
applied profitably to more than one domain.

Using one mechanism to structure both values and
assignments, we obtain equivalents for a variety
of data and control structures. Structuring
assignments is preferable to structuring control:
the former is more conducive to a mathematical
style of programming while the latter is more
conducive to tracing.

Key Words and Phrases: language design,
data structures, control structures, recursion.

‘CR Category: 4.20.
0. Introduction

Programming languages today have a variety
of data structures and control structures that
are interded to be convenient for programming.
For example, pL/1 provides character strings (a
structure of characters), arrays, and the
"structure" (known in some languages as a
"record") for structuring data, and "if" state-
ments, definite (or indexed) iteration, in-
definite iteration (the "while" loop), and of
course, the 'go to'" for structuring control. In
each case, it is quite clear whether the comstruct
is a data structure or a control structure. Two
assumptions are implicit: that a variety of
structures 'serves us better than one, and that
structures are appropriate for data or for control
but not for both. This paper questions these twoc
assumptions. It suggests that a well-chosen
structuring mechanism, defined independently
of what is being structured, can provide the
good things we now enjoy, while keeping the
number of basic language constructs to a minimum.
We first exhibit one such mechanism, then discuss
its merits.

i

'l. The Structure

To begin with, we shall give ourselves some
simple values: the two logical values true and
false; numeric values such as 3 and 3.3E3;
character values such as 'A'; and a facility for
defining new simple values, such as red, blue and
green, as in Pascal. Whether these values are
truly "simple'will not be debated; it is a con-
venient choice for the moment. Character strings
are not considered simple, and are not included

201

in the above. We give ourselves also a handful of
logical, numeric and comparison operators for
forming expressions.
Next, we give ourselves a simple assignment:
identifier := expression
Note that the left side may not be an array
element. (Declaration of variables, though

important, is irrelevant at present.)

Finally, we give ourselves a naming notation

}fot values and assignments. For example,

pt: 3.14

means that wherever pi appears, it will stand
for 3.14, and

increment: 1 =1 + 1

means that wherever inerement appears, it will
stand for the assignment ¢ := { + 1. To distin--
guish inerement from a conventional label, we
emphasize that the above statement does not in-
crement %, but only gives a name to the act of
incrementing 7.

Our structure is simply a set of ordered
pairs. The first member of each pair is called
an index, the second an element, of the structure.
Indices are values. (It may seem appropriate to
restrict the indices of a given structure to one
type, or to a contiguous subrange of a type, but
such restrictions are irrelevant to this paper.)
An expression of an index may include variables,
although our examples will use only constants.
The elements of a structure constitute that which
is being structured; we shall consider structured
values and structured assignments. -

2. Structured Values

Define a map as a structure whose elements
are values. For example, the map

map 1+11, 2+12, 3»13 [

has indices 1, 2 and 3, and elements 11, 12 and
13. A map is itself a value, and can be used in
expressions. in assignments, or as indices or
elements. It may be given a name by the same

,_a—»—ww_ T T I

notation used to give a simple value a name. If

M 1s or denotes a map, and 7 1is or denotes
an index of M, then M[Z] denotes an elemen’ of

M corresponding to index % (if this element
is to be unique, the indices must be unique).
Other operations on maps may be defined as deemed
necessary; for example, if ¥ 418 a map and 1
and e are values, then the expression

M with i-e
denotes a map like M except that M[Z] = e.

Certain special cases of maps deserve
special notations. When the indices are the
integers 1 to n, the notation may be abbreviated
by listing only the elements, in order of index,
enclosed in angle brackets. The map of the
previous paragraph may be expressed as

@r, 12, 13)

This gives us a kind of array., If the elements
are characters, e.g. ('A', 'B', 'C'), we may
abbreviate further, e.g. "ABC". This gives us
character strings. The equivalent of records

(or PL/I structures) are formed, not as an abbrev-
{ation, but simply by using suitable programmer-
defined values as indices:

map name + "HEHNER",
address -+ map city -+ "TORONTO",
country + "CANADA" 0 O

-It is' convenient to group indices that have
equal elements, so that

3, 4, .5 > 50

stands for three index-element pairs., In this
connection, and for arrays, the abbreviation n
to m can stand for n, n+l,..., m whenever n
and m denote appropriate values.

By introducing a name for the index, we can
express a group of elements in terms of their
indices. By specifying a range for the index
(i.e. a domain for the map), we obtain either
redundancy that is useful for checking that all
indices are present, or the ability to specify
a restricted else; for example,

map 7 € (1 to 100)
3oL L0 508
11 to 20 + 7x2,
else - 00

is a sparse array containing thirteen non-zero
and eighty-seven zero elements. The generaliza-
tion to maps with more than one index (multi-
dimensional arrays) is straightforward.

In some cases, a ~ompiler may represent a map
as a sequence of pairs of values; in other cases
only the elements need storage. In still other
cases, maps may be compiled into code for comput-
ing values from indices. As an example in which
the latter is suitable, consider the following re-
cursive definition of limited factorial.

202

-

factorial: map n € {0 to 99999)
(0)f2 =ty
else + nxfactortal[n-1] O

The reader may, at this point, feel drowned
in notation. But he should not feel drowned in
concepts or language features. Different pro-
grammers will have different data structuring
requirements, and different notations and abbrevi-
ations that seem convenient for their purposes.

No programming language can hope to provide all
such notations, nor should it attempt to. Instead
it should provide a general structure, and a
mechanism for specializing it to an individual's
needs, and for making convenient abbreviations.
This paper does not discuss such mechanisms. It

‘suggests that the "map" can easily be specialized

to provide a variety of programmers’ needs, while
maintaining an economy of concepts within the pro-
gramming language. It also suggests certain
specializations that seem needed often enough to
desc--ve special notations within the language.

3. Structured Assignments

Define a group as a structure whose elements
are assignments. For example,

roup 1 »> x := 11;
2 >y = 12
3>z :=130

A group is itself an assignment; it is executed
by executing its elements in the order they are
written.* (This may be a slight abuse of the
term "assignment'"; it is used here to mean a
notation for associating some variables with some
values, rather than exactly one variable with ome
value.) A group may be given a name by the same
notation used to give a simple assignment a name .
If G 1is or denotes a group, and 7 1is or de-
notes an index of G, then G[Z] denotes an element
of G corresponding to index <. (Once again,
if the element is to be unique, the indices must
be unique. Without this restriction, we can
build Dijkstra's guarded command sets [1l] by
using logical expressions as indices.)

Thus one builds a group and selects elements
from it the same way one builds and selects
elements from a map., Most of the same abbrevia-
tions are relevant. When the indices are the
integers 1 to n, or when we are uninterested in
the indices, the elements may simply be listed,
giving us the usual "do group". For example,
the group of the previous paragraph may be ex-
pressed as

do = := 11;
y = 12;
z =130

*The alternative of executing elements in order of
increasing index was considered, but rejected for
two reasons: we did not want to restrict the
indices to be of an ordered type; the for con-
struct for this alternative was more complicated.
One alternative remains in contention: that
groups should not be executed; a separate syntac-—
tic construct is then required for sequencing.

A

v

R

If G 1is a group, then ([i] is evidently a
case statement (either the Algol W kind, or the-
pPascal kind), for which a more familiar notation is

case 7 of G

As a further specialization, we introduce the no-
tation 1if ... then ... else ... [to abbreviate
a two-element group, whose indices are true and
false, from which we are selecting one of the

elements. For example,
if b
then = := 5
else y = 7 0
abbreviates
group true -+ x := 5;
false » y := 7 0 [D]

Similarly, if ... then ... [J abbreviates the
special case when the false alternative is null.
The else, which was so useful in the previous
section for specifying sparse arrays, has an
analogous role in groups used as case statements.

By introducing a name for the index and group-

ing indices, we have a for construct. The nota-
tion
for v 1 gg 3, 5d
s :=s+10
merely abbreviates
group 7 € (1 to 3, 5)
l1to3,5>s:=s+10

which in turn abbreviates

roup. 1 > s =8 + 1;
2 +>s8 =8+ 2;
Joigsi=tsi 4 3
S+>s8 =8+ 5.0

The generalization to more than one index, which
in the previous section gave us multi-
dimensional arrays, here gives us the effect

of nested for constructs, but written as a
simple construct. Notice that the indices are
not variables, so no question of assignment
involving indices within the construct is
raised.

Finally, the notation while ... do ... O
may be used to abbreviate a recursively y defined

group. For example,
while 7 < 10 do
: 7 =2 + 10 :
abbreviates a group, say (G, defined as
G: if 7 < 10
then 7 := 7 + 1;
G0

Those who consider iteration to be simpler than
recursion may, at this point, be unhappy. The
next section is intended to change the viewpoint
of those people.

203

4, Understaﬁding,Structured Assignments

When we read or write pfograms, we have
always maintained a thinly disguised '"program
counter" or "instruction pointer'; we are always
aware of the flow of control. For example, at
the end of a loop we know that control or ex-
ecittion goes back to the beginning of the loop.
We have no problem understanding the go to:
execution continues at the indicated statement
(understanding programs containing go tos is
another matter).

Recursive flow of control, in general, in-
volves a stack of return addresses, and so it is
more complicated than looping. In current pro-
gramming languages it is further complicated by
making it inseparable from procedures, which in-
troduce a new local scope each invocation. In
this paper, recursion was introduced independently
of local scepe; even so, defining a while loop by
way of recursion may seem to be defining something
simple by way of something complex.

A program should not be understood in terms
of a particular implementation of a language,
nor by tracing an execution of the program. These
two premises are generally well accepted, and need
no defense in this paper. Yet in almost every
programming text, control structures are ex-
plained only by explaining how to trace an execu-
tion according to some implementation.

Selection (if or case) is usually explained
by saying that control jumps to one of the
alternatives, and from there to the end of the
construct. In this paper, the notation G[z] 1is
said to denote an element of (. Apart from the
subtle change in attitude, the use of the word
"Jump" may sometimes be misleading. For example,
with the constant definition

devices: 4

the structured assignment

.15 devices < 10
then 4
else B [

can be compiled simply as A, giving conditional
compilation without any new language feature.

We introduced the for construct as an abbreviation
for a sequence of assignments, rather than as a
"loop". The important point is not the change in
terminology, but the change in thinking: from
jumping control to structured assignments. One
could never invent a go to as a structured assign-
ment.

An explanation of recursion that involves
activation records or return address stacks is
irrelevant, confusing, and often wrong. The best
implementation of the recursive group in the
previous section is exactly the same as the im-
plementation of the while construct that
abbreviates it{6]. The proper explanation of a
recursive construct, or of a while construct, in-
volves the principle of mathematical induction[3].

T TSI atanie s

t
!
|
|

It is sometimes objected that an average
person cannot be expected to understand the prin-
ciple of induction, or to apply it to programming.
If that were true, it would not be an argument
against the use of induction in programming, but
against the use of average people as programmers.
In fact, average people understand the principle
perfectly well, although informally. Given a
positive integer, and enough time, an average
person believes he can count from 1 to the given
integer. For large enough integers, that be-
lief is not based on the experience of having
done so, but on an implicit understanding of
the principle of induction.

It is often easy to see that a recursive
construct works for n = 0, and that if it works
for n = k - 1, it will work for n = k. The
common mistake is asking (or explaining) how it
works for n = k - 1. This mistake is made for omne
of two reasons: (a) failure to assume the in-
ducive hypothesis; indv-tion requires that we
prove an implication, not the hypothesis of the
implication. (b) curiosity about the implementa-
tion; an explanation of the implementation should
come only after the semantics are understood, not
as an explanation of the semantics. For either
reason, this mistake leads to an effort to
understand by tracing, and to the poor man's
induction: "If it works for n = 1, 2 and 3, then
that's good enough for me.".

Mathematical semantics refers to the
characterization of programming language state-
ments by their effect on program state (the
mapping from variables to values). It has >
developed as a technique for defining programming
languages[9]. In this view, the time sequence
of events that occur during program execution is
irrelevant: a statement is a mathematical

" function from states to states. Unfortunately,
may of the statements it has been used to
characterize were designed to control execu-
-tion. By structuring assignments, rather than
control, we are taking the view that is con-
sistent with mathematical semantics.

5. Exits

The while loop, considered as a construct
denoting repetitive execution, has one exit: at
its head. 4And that exit is only a "single-
level" exit that cannot be used to terminate
execution of several nested loops at once.
Intermediate and deep exits have been proposed
in various forms; for arguments pro and con
see [7]. Suppose Al 1is defined as

Al: while bl do
A2,
A3 0

and action (assignment) 42 within Al 1is
defined as

A2: wnile b2 do
A
if = b3
s then exit Al (;
A5 [0

204

where the notation exit Al means that we jump to
the statement following Al. The benefit of thi,
construct is efficiency: with only single-leve;
exits, one needs to perform a test within Al, 1,,,
prior to A3, to determine whether to execute 43
and continue Al, or to exit Al. The problem with
this construct is a loss of clarity: an examins-
tion of Al would lead one to conclude wronply
that A2 and A3 are executed repeatedly unti!}
bl becomes false.

As structured assignments, rather than
structured control, loops and exits are unaccep:-

able. The equivalent recursive definitions are
as follows.
Al: if b1
then 42 0
A2: 1if b2
: then 44;
if b3
then 45;
A2 O
else A3; ;
Al 0

The recursions may be implemented by simply branc:
ing to the appropriate label; we thus have the
efficiency of the deep exit without inventing a
new language feature. And the condition under
which 43 1is executed is clear at a glance. The
loop-with-exit has the curious property that when
there is more to be done,one says nothing,but when
there is no more to be done, one says something:
exit. The recursive version is more straight-
forward; when there is more to be done, one
speécifies it, and when there is not, one says
nothing.

6. Uniform Referents

When programming, if one decides that one
needs to seleét a value from a class of values,
one can use the notation F[z] where F denotes
the class, and x 1is used to select the desired
element of F. One may then decide to implement

F either as a map, or, if one needs to intre-
duce local names and variables and to use asaiza-
ments in the production of the desired value, a3
a function (procedure that returns a value and
does not affect global variables). The notatics

Flx] must not prejudice the choice of implezen
tation of F. A change in the implementatica
of F that does not change the meaning of the
program, such as substituting a map for a
function or vice versa, should not require
changing the notations involving F throughout
the program. The above principle of language
design is (a version of) the 'principle of
uniform referents'"[8].

We now have a new application for the
principle. If one decides that one needs to‘
select an action (assignment) from a class ¢
actions, one can give the class a name, say -
and denote selecting the desired action by
This notation should allow G tolbe implesen
either as a group, giving us a "case statcﬁf“f
implementation, or asa routine (procedure that

affects global variables and does not return a 9. Scott, D. and Strachey, C. Towards a

value). mathematical semantics for computer
languages. J. Fox (ed.), Computers and
7. Conclusion Automata, John Wiley, pp. 19-46 (1972).

The point of this paper is not the nota-
tions used to present the structuring mechanism; Q
when the reader finds them awkward or un-
pleasant he is invited to change them. Nor is
the point the particular structuring mechanism
chosen; it is not claimed that the mechanism
in this paper is adequate or suitable for all
purposes.,

There are two main points. One is that
structuring can be defined independently of what
is being structured, and can then be applied
profitably to more ‘than one domain. A well-
chosen general structure that can be specialized
in a variety of ways is preferable to the myriad
of seemingly unrelated structures we now live
with. The other main point is that structuring
assignments is preferable to structuring control.
The former is more conducive to a mathematical
style of program composition, while the latter
is more conducive to tracing. Arguments in
favour of structuring values rather than storage
have been presented elsewhere[2,4].

Acknowledgement

I am indebted to Jim Horning, Nigel Horspool
and Brian Clark for discussions and suggestions
that lgjﬂ to this paper.

References

1. Dijkstra, E.W. A Discipline of Programming.
Prentice-Hall (1976).

2., Hehner, E.C.R. A simple view of variables
and parameters. (to appear.)

3. Hoare, C.A.R. An axiomatic basis for
computer programming. Comm. ACM 12(10)
(October 1969).

4. Hoare, C.A.R. Recursive data structures.
Report STAN-CS-73-400, Stanford
University (1973).

S. Kieburtz, R.B. Programming without pointer
variables. ACM Conference on Data, Salt
Lake City (March 1976). : .

6. Knuth, D.E. Structured programming with
" go to statements. ACM Computing Surveys,
6.4 (December 1974).

7. Ledgard, H.F., Marcotty, M. A genealogy of
control structures. Comm. ACM 18(11)
(November 1975).

8. Ross, D.T. Uniform referents: an essential
property for a software engineering language.
in Tou, J.T. (ed.) Software Engineering,
Academic Press (1970).

205

T e . N Sy

