
A NEW REPRESENTATION OF THE RATIONAL NUMBERS
FOR FAST EASY ARITHMETIC

ERIC C. R. HEHNER and R. N. S. HORSPOOL

 Abstract. A novel system for representing the rational numbers based on Hensel's p-adic arithmetic is proposed.
The new scheme uses a compact variable-length encoding that may be viewed as a generalization of radix
complement notation. It allows exact arithmetic, and approximate arithmetic under programmer control. It is
superior to existing coding methods because the arithmetic operations take particularly simple, consistent forms.
These attributes make the new number representation attractive for use in computer hardware.

 Key words. number systems, number representation, rational arithmetic, p-adic numbers, radix complement,
floating-point

 1. Introduction. “It's very illuminating to think about the fact that some –at most four
hundred– years ago, professors at European universities would tell the brilliant students that if
they were very diligent, it was not impossible to learn how to do long division. You see, the poor
guys had to do it in Roman numerals. Now, here you see in a nutshell what a difference there is
in a good and bad notation.” (Dijkstra 1977)
 We consider that a good scheme for representing numbers, especially for computers,
would have the following characteristics.
 (a) All rational numbers are finitely representable. This requires that the representation be
variable-length.
 (b) The representation is compact. It should require less space, on average, than the fixed-
length schemes commonly used in computers. Since the numbers provided by a fixed-length
representation are not used equally often, compactness can be achieved by giving frequently-
occurring numbers short encodings at the expense of longer encodings for less-frequent numbers.
 (c) The addition, subtraction, and multiplication algorithms are those of the usual integer
arithmetic. The division algorithm is as easy as multiplication, and it proceeds in the same
direction as the other three algorithms. This property is important for the storage and retrieval of
variable-length operands and results.
 Although the desired representation is variable-length, there is no implication that
operations must be performed serially by digit. Just as data can be retrieved and stored d digits at
a time, so the arithmetic unit can be designed to perform operations d digits at a time. By
choosing d to be large compared to the average length of operands, we can obtain the speed of a
fixed-length design together with the ability to handle operands that are not representable in a
fixed length (Wilner 1972).

 2. Background. Before we present our proposal, we shall briefly review representations
in common use. (For their history, see (Knuth 1969a).)
 Almost universally, the sequence of digits · · · di · · · d3 d2 d1 d0 is used to represent the
nonnegative integer

where b (the base) is an integer greater than one (usually two or ten), and each digit di ,
represents an integer in the range 0 ≤ di < b . As a rule, we do not write leading 0s. We must
break the rule, however, to represent zero (if we follow it, there is nothing to write).

n = dib
i

i
∑

http://www.cs.utoronto.ca/~hehner
http://www.cs.uvic.ca/~nigelh

Hehner, Horspool: a New Representation of the Rational Numbers ���2

 There is no direct representation of negative integers in common use. Instead we prefix a
unary operator to the representation of positive integers. The combination of “sign and
magnitude” is indirect because, to perform arithmetic, we may first have to apply some algebraic
transformations. If asked to add two numbers, we first examine the signs to determine whether to
use the addition or subtraction algorithm; if we are using the subtraction algorithm, we compare
the magnitudes to determine which is to be subtrahend, and which minuend. With a direct
representation, if asked to add, we simply add. The radix complement representation is direct in
this sense, but it includes only a finite subset of the integers.
 Rationals are commonly represented by a pair of integers: a numerator and denominator.
In this form, multiplication and division are reasonably easy, but addition and subtraction are
relatively hard, and normalization is difficult (Horn 1977). When addition and subtraction are
wanted more often than multiplication and division, a representation that makes the former easier
at the expense of the latter would be preferable. For this reason, we usually restrict our numbers
to a subset of the rationals known as the “fixed-point” or “floating-point” numbers. By inserting
a radix point in a sequence of digits (fixed-point), or indicating by means of an exponent where a
radix point should be placed (floating-point), we represent those rationals such that, in lowest
terms, the denominator divides some power of the base. In this form, addition and subtraction
are, after alignment of the radix point, the same as for integers. With a variable-length
representation, a major difficulty with the usual division algorithm is that it proceeds from left to
right, opposite to the direction of the other three algorithms. To simplify retrieval, processing,
and storage, all algorithms should examine their operands and produce their results in the same
direction.
 The left-to-right division algorithm gives us a way of extending the fixed/floating point
representation to include all positive rationals: an infinite but eventually repeating sequence of
digits can be finitely denoted by indicating the repeating portion. On paper, the repeating portion
is sometimes denoted by overscoring it; for example, . A minor annoyance is
the fact that representations are not unique; for example, and . A major
annoyance is that further arithmetic is awkward: addition normally begins with the rightmost
digit, but a sequence that extends infinitely to the right has no rightmost digit.
 The usual representation of nonnegative integers can be extended in various ways. The
base may be negative (Songster 1963), or even imaginary (Knuth 1960). In the “balanced
ternary” representation (Avizienis 1971), the base is three, and the digits represent the integers
minus-one, zero, and one. Our extension, which we now present, is in quite a different direction.

 3. Constructing the representation. To construct our representation, we shall follow the
approach of Hensel's p-adic arithmetic (Hensel 1908, 1913). We begin with the usual
representation of nonnegative integers, that is, a sequence of digits · · · d3 d2 d1 d0 . Each digit
di represents an integer in the range 0 ≤ di < b , where the base b is an integer greater than one.
We then constructs the representation of other numbers (all rationals, some irrationals and some
imaginary numbers (Knuth 1969b)) by means of arithmetic. We shall limit ourselves to rational
numbers, and give a finite representation of them that is implementable in computer hardware.

 3.1. Addition, subtraction and multiplication. For the addition and subtraction
algorithms, we adopt the usual algorithms for positive integers, with one qualification. When
subtracting a digit of the subtrahend from a smaller digit of the minuend, rather than “borrow”
one from a minuend digit some distance away, we “carry” one to the immediately neighboring

611/ 495 = 1.234
0.9 = 1 0.49 = 0.5

Hehner, Horspool: a New Representation of the Rational Numbers ���3

digit of the subtrahend. For example,
 2 7 0 0 4
– 31 51 216___________
 2 3 4 7 8

beginning at the right, we subtract 6 from 4 to get 8 with a carry; then, rather than subtracting the
2 in the next position, we subtract 3 from 0 to get 7 with a carry; etc. Whether we “carry” or
“borrow” is inconsequential; the important point is that we affect only the immediately
neighboring digit, not a digit an arbitrary distance away. This form of subtraction is usual in
circuit design; it is crucial to our number representation.
 We now construct minus-one by subtracting one from zero.

 ··· 0 0 0 0
–··· 01 01 011_____________
 ··· 9 9 9 9

Beginning at the right, the subtraction algorithm generates a sequence of 9s. Though the
sequence is unending, it is repetitive, and can be specified finitely. We shall use a quote
(quotation mark) to mean that the digit(s) to its left is (are) to be repeated indefinitely to the left.
Twenty-five, for example, is represented by 0'25 or by 0'025 or by 00'25. The first of these is
called “normalized”; in general, a representation is normalized when it is as short as possible. A
table of normalized representations of integers follows; each entry specifies the usual
representation together with our representation.

0: 0'
1: 0'1 -1: 9'
2: 0'2 -2: 9'8
3: 0'3 -3: 9'7
: :

9: 0'9 -9: 9'1
10: 0'10 -10: 9'0
11: 0'11 -11: 9'89

: :

For brevity on the written page (the abbreviation is inapplicable in computer memories), we
make the convention that when no quote appears in a number, 0' is assumed to be appended to its
left. Thus the positive integers take their familiar form.
 The reader may verify, with examples, that the addition and subtraction algorithms work
consistently throughout the scheme. This is no surprise to anyone familiar with radix
complement arithmetic, for the similarity is apparent. The rule for negation is the radix
complement rule: complement each digit (in decimal, change 0 to 9, 1 to 8, 2 to 7, etc.) and then
add one. (Negation can be performed more simply; for example, in binary starting at the right,
leave trailing 0s and rightmost 1 alone, flip the rest.) The definition of radix complement is made
in terms of a fixed-size space available for storing numbers in computers (the “word”); for
example, if w bits are available for encoding integers, two's complement is defined by
performing arithmetic modulo 2w. We prefer to define it independent of space constraints, and to

Hehner, Horspool: a New Representation of the Rational Numbers ���4

view the fixed-size scheme as a truncation of p-adic numbers to w bits. Radix complement is
often preferred in computers because of its nice arithmetic properties; our finite representation of
p-adic rationals enjoys these properties without suffering from the wasted space and overflow
problems inherent in a fixed-length representation.
 The usual multiplication algorithm need not be altered for use with negative integers. For
example, multiplying minus-two by three, either way round, yields the desired result.

 9'8 3
× 3 × 9'8
 9'4 2 4

 2 7
 2 7
 :
 :

 9'4

 3.2 Division. Before we present the division algorithm, let us look at a simple example.
Since 9' represents minus-one, we may expect division by 3 to give 3' as the representation of
minus-one-third. Let us test the consistency of this representation with our arithmetic. To negate,
we first complement, obtaining 6' (since 6' is double 3', it represents minus-two-thirds); then we
add one, obtaining 6'7 as our representation of one-third. Subtracting 3' from 0' also produces 6'7.
Multiplying 6'7 by 3 yields 1, confirming its consistency.

0'-1 = 9' (minus-one)
 9' 3 = 3' (minus-one-third)

complement of 3' = 6'
or 3'×2 = 6' (minus-two-thirds)

 6'+1 = 6'7 (one-third)
or 0'-3'= 6'7

6'7 ×3 = 1

 We now present the division algorithm by means of an example. For the moment, we
restrict ourselves to integer dividends and divisors, and further to divisors whose rightmost digit
is nonzero and relatively prime to the base. (Two integers are relatively prime if and only if their
only common divisor is 1. In decimal, the divisor's final digit must be 1, 3, 7, or 9.) We shall
remove all restrictions shortly.
 For our example, we divide 191 by 33. The rightmost digit of the result, d0, when
multiplied by the rightmost digit of the divisor, 3, must produce a number whose rightmost digit
is the rightmost digit of the dividend, 1. Our restrictions ensure that there is exactly one such
digit: d0×3 must end with 1, therefore d0=7. We subtract 7×33 from 191; ignoring the rightmost
digit, which must be 0, we use the difference in place of the dividend, and repeat.

÷

Hehner, Horspool: a New Representation of the Rational Numbers ���5

 1 9 1 3 3 = 1 2'7
 - 2 3 1
 9'6
 - 6 6
 9'3
- 3 3
9'6

When the difference is one we have seen before, we can insert the quote, and stop.
 Like multiplication, the division algorithm produces each digit by table look-up.
Compare this with the left-to-right division algorithm: a “hand calculation” requires a guess that
may need to be revised; a “machine calculation” requires repeated subtraction to produce each
digit of the result.
 The right-to-left division algorithm is well-defined only when the divisor's final digit is
relatively prime to the base. For example, an attempt to divide 1 by 2 in decimal fails because no
multiple of 2 has 1 as its final digit. Therefore, the means presented so far enable us to represent
only a subset of the rationals: those rationals such that, in lowest terms, the denominator has no
factors that are factors of the base. Compare this with the fixed/floating-point representation; it
represents those rationals such that, in lowest terms, the denominator has only factors that are
factors of the base. The two representations are, in a sense, complementary; combining them, we
are able to represent all rationals. We allow a radix point, whose position is independent of the
quote, or an exponent, as in scientific notation. For example,

 12'34 10 = 12'3.4
12'3.4 10 = 12!34
 12!34 10 = 1.2'34
 1.2'34 10 = .12'34
 .12'34 10 = .21'234

The last example is probably best written with an exponent, and suggests that the more
appropriate machine representation uses an exponent rather than a radix point. This requires a
normalization rule: when normalized, the mantissa's rightmost digit is not 0. Thus 12'300E2
becomes 12'3E4, and 120'E2 becomes 012'E3. All rationals except zero have a unique
normalized representation.
 To divide two arbitrary integers in decimal, we must first “cast out” all 2 and 5 factors
from the divisor. These factors can be determined, one at a time, by inspecting the divisor's final
digit. A 2 is cast out by multiplying both dividend and divisor by 5; similarly, a 5 is cast out with
a multiplication by 2. The generalization to arbitrary (rational) operands is now easy.

 4. Binary is beautiful. Base two, a common choice in computers for circuit reasons, has
two important advantages for us. First, it is a prime number. Since it has no factors, there is no
“casting out”; division of two normalized operands can always proceed directly. Second,
multiplication and division tables are trivial. This advantage for multiplication is well-known:
the right-to-left division algorithm is a true analogue of multiplication, so the same advantage
applies. At each step, the rightmost bit of the dividend remaining
 (a) is the next bit of the result, and

÷

÷
÷
÷
÷
÷

Hehner, Horspool: a New Representation of the Rational Numbers ���6

 (b) specifies whether or not to subtract the divisor.
For example, dividing 1 (one) by 11 (three) proceed as follows.

 1 1 1 = 0 1'1
 - 1 1
 1'
- 1 1
1'0

 - 0
1'

1. Dividend = 1. Its rightmost bit = 1. Therefore
 (a) Rightmost bit of result = 1.
 (b) Subtract divisor, and ignore rightmost 0.
2. Dividend remaining = 1'. Its rightmost bit = 1. Therefore
 (a) Next bit of result = 1.
 (b) Subtract divisor, and ignore rightmost 0.
3. Dividend remaining = 1'0. Its rightmost bit = 0. Therefore
 (a) Next bit of result = 0.
 (b) Subtract 0; ignore rightmost 0.
4. Dividend remaining = 1' as in step 2. Therefore insert quote after 2 bits. Result = 01'1.

 5. Radix conversion algorithm. The algorithm for converting the representation of a
positive integer from one base to another is well-known. The given integer is repeatedly divided
by the base of the new representation; the sequence of remainders gives, from right to left, the
digits of the new representation. For example, converting eleven from decimal to binary

11 = 2×5+1
 5 = 2×2+1
 2 = 2×1+0
 1 = 2×0+1

gives 1011.The algorithm is usually considered to terminate when the quotient is zero; if it is
allowed to continue, an endless sequence of 0s is produced.
 Let us apply the algorithm to a negative integer. For example, converting minus-eleven
from decimal to binary

 -11 = 2×-6 + 1
 -6 = 2×-3 + 0
 -3 = 2×-2 + 1
 -2 = 2×-1 + 0
 -1 = 2×-1 + 1
 -1 = 2×-1 + 1

gives · · · 1110101, which is the p-adic form. Note that the remainders must be digits in the new
base. By recognizing a repeated state of the computation, we are able to insert a quote and arrive

÷

Hehner, Horspool: a New Representation of the Rational Numbers ���7

at our finite representation 1'0101.
 If we begin with a fraction, we must allow the quotients to be fractions. We then need an
extra criterion to make the algorithm deterministic. For example, converting one-third to binary,
we might begin either with

1/3 = 2× -1/3 + 1
or with

1/3 = 2× 1/6 + 0

To produce a result without a radix point, the original fraction, and each quotient fraction, in
lowest terms, must have denominators that are relatively prime to the new base. The implied
criterion is that the denominator must remain unchanged.

 1/3 = 2× -1/3 +1
-1/3 = 2× -2/3 +1
-2/3 = 2× -1/3 +0

When a quotient is obtained that has appeared before, a cycle is recognized. Placing the quote
accordingly, we have produced the binary representation of one-third, namely 01'1. Thus the
usual radix conversion algorithm naturally produces our representation.
 In the preceding examples, we began with numbers in their familiar decimal
representations: sign-and-magnitude, numerator/denominator. If we begin instead with our
representation, the algorithm remains the same for rationals (without radix points) as for positive
integers. For example, beginning with 6'7 (one-third in decimal), we see that the rightmost digit
is odd, therefore the rightmost binary digit is 1.

(6'7-1) 2 = 3'
 (3'-1) 2 = 6'
 (6'-0) 2 = 3'

The division by two is performed as a multiplication by five, discarding the rightmost digit of the
result, which is 0. In general, when converting from base b1 to base b2, a finite number of
rightmost digits of each quotient is sufficient to determine the next digit of the result if all factors
of b2 are factors of b1.

 6. Properties of the proposed number system. Excluding the radix point or exponent,
the general form of our representation is

dn+mdn+m–1 · · · dn+1'dndn–1 · · · d2d1d0

The number represented is

where b is the base of the representation. To justify this formula, we shall break the digit

÷
÷
÷

dib
i − dib

i /(bm −1)
i= n+1

n+m

∑
i= 0

n

∑

Hehner, Horspool: a New Representation of the Rational Numbers ���8

sequence into two parts: the digits to the left of the quote will be called the “negative part”, and
the digits to its right will be called the “positive part”. The positive part was our starting point for
the construction of the representation.
 n
 dn · · · d0 = Σ dibi
 i=0

The negative part can be found as follows.

 dn+mdn+m–1 · · · dn+1' = dn+mdn+m–1 · · · dn+1'0 · · · 0 + dn+mdn+m–1 · · · dn+1

 n+m
 = dn+mdn+m–1 · · · dn+1' × bm + Σ dibi–n–1
 i=n+1

Therefore
 n+m
 dn+m · · · dn+1' = – Σ dibi–n–1 /(bm – 1)
 i=n+1

Putting the positive and negative parts together, we find

dn+m · · · dn+1'dn · · · d0 = (dn+m · · · dn+1') × bn+1 + (dn · · · d0)

and hence we obtain the above formula.
 From the formula, we see that sign determination is trivial. If both positive and negative
parts are present, we merely compare their leading digits. Assuming the representation to be
normalized, dn+m ≠ dn .
 If dn+m < dn , the number is positive.
 If dn+m > dn , the number is negative.
 If one part is absent, the sign is given by the part that is present. If both parts are absent,
the number is zero.
 The formula can be used to convert from our representation to numerator/denominator
representation, if one so desires. For example, in decimal 12'7 = 7–120/99=191/33; in binary
01'1=1–010/11=1/11 (one-third). From this formula, we can also derive an easy method for
converting to a right-repeating decimal expansion (or binary expansion). Simply subtract the
negative part from the positive part with their leading digits aligned and the negative part
repeated indefinitely to the right.

$
$
$

The opposite conversion can be performed by reversing the steps.

$

12'345 = 345 – 121.21 = 223.78
123'45 = 45 – 12.312 = 32.687
43'21 = 21 – 43.43 = –22.43

2.34 = 2 – 34' = 56'8

Hehner, Horspool: a New Representation of the Rational Numbers ���9

 The above paragraphs suggest two comparison algorithms. The first is to subtract the
comparands, then determine the sign of the result. The second is to convert the comparands to
right-repeating form, then perform the usual digit-by-digit comparison. The first has the
advantage that it is a right-to-left algorithm, but the second may have an efficiency advantage.

 7. Length of representation. When two p-adic rational numbers are added, subtracted,
multiplied, or divided, the result is an infinite but eventually repeating sequence of digits. For
termination of the arithmetic algorithms, and for finite representation of the result (placing the
quote), one must be able to recognize when the state of the computation is one that has occurred
before. In a hand calculation, recognition poses no problem: one merely scans the page. The
analogous approach for machines requires the arithmetic unit to contain some associative
memory. Each state of the computation is compared (associatively, in parallel) with all stored
states; if a match is found, the operation is complete, otherwise the state is stored and the
operation continues. The resulting digit sequence must be checked for normalization.
 A method of recognizing the repeated state that requires storing only one state, at the
expense of possibly delaying recognition by a few digits, is the following (Brent 1978). If the
states are S1, S2, S3,· · ·, then test (S1 vs. S2), (S2, vs. S3, S4), (S4 vs. S5,· · ·,S8), etc., until a
match is found. Again, the resulting digit sequence must be normalized.

 7.1. Length Bounds. An alternative method of implementing the arithmetic algorithms is
as follows:
 (a) calculate a bound for the length (number of digits) of the result;
 (b) calculate a correct, though not necessarily minimal, length for the negative (repeating)
 part;
 (c) produce a sufficient number of digits to ensure that a repetition of the length
 calculated in (b) has occurred;
 (d) normalize the result.
This approach obviates the need to recognize a repeated state. However, the complexity of our
formulae for the length bounds makes the approach unattractive.
 The bounds are summarized in Table 1. The notation used in the table is the following.
b: the base of the representation
pi: the length of the positive part (i.e. the number of digits to the right of the quote) in the base p
representation of xi
ni: the length of the negative part (i.e. the number of digits to the left of the quote) in the base p
representation of xi
∅: Euler's ∅ function; ∅(m) is defined, for positive integer m, as the number of positive integers
not exceeding m that are relatively prime to m.

Table 1
Length Bounds

 x3=x1+x2 p3≤MAX(p1,p2)+n3+2
 x3=x1–x2 n3 is a divisor of LCM(n1,n2)
 x3=x1×x2 p3≤p1+p2+n3+1
 n3 is a divisor of LCM(n1,n2)
 x3=x1÷x2 p3≤p1+p2+n3+1 if p2≤n2

Hehner, Horspool: a New Representation of the Rational Numbers ���10

 p3≤p1–p2+n3+1 if n2<p2≤p1
 p3≤n3+1 if p1,n2<p2
 n3 is a divisor of LCM(n1,∅(x2(bn2–1)))

 7.2. Approximation. Our representation provides a service that is unavailable to users of
fixed-length floating-point hardware: exact results. As arithmetic operators are applied
repeatedly during a computation, this extra service may begin to cost extra: the length of
representation of the results may tend to grow. As the lengths grow, storage costs increase; as the
lengths become greater than the number of digits that a data path or arithmetic unit can
accommodate at one time, processing time increases. Many users do not require perfect accuracy,
and are unwilling to pay extra for it.
 Users of fixed-length floating-point hardware have their accuracy and expense chosen for
them by the computer designer. The designer's impossible task is to choose one accuracy and
expense (amount of storage per number) to satisfy all users at all times. Some designers give
their users a choice of two accuracies (single and double precision); it seems preferable to allow
each user to choose any accuracy, from none to complete.
 For reasons of mathematical cleanliness, we prefer not to provide approximate versions
of the addition, subtraction, multiplication, and division operators, but to provide a separate
approximation operator. Two possible (and ideal) forms of this operator are:

 (a) Given a number n, and a number of digits d, n@d is a number that is closest to n and
 whose representation has no more than d digits.
 (b) Given a number n, and a tolerance t, n@t is a number in the range n ± nt whose
 representation is shortest.

In either form, the problem of finding a “closest” or “shortest” result is a hard one; in practice, a
reasonably close or short result is easy to obtain, and acceptable. One method is to convert the
number to right-repeating form (using the algorithm in §6) and then truncate the result. For
example, 12'34.567 is first converted to and this may be approximated to 0'22.4458, to
0'22.436, or to 0'22.45, etc. In general, if the final truncated result has k digits to the right of the
radix point, then it is easy to show that the error introduced by the approximation is less than

 where b is the base of the number system. This form of approximation corresponds to the
first style of approximation operator given above.
 The role of the numerical analyst has traditionally been to analyze the accuracy (error)
provided by the manufacturer, and to design algorithms which make the best use of this accuracy
(i.e., whose final result is most accurate). With our proposal, the numerical analyst's role will be
to choose approximations that make a computation as cheap as possible, while achieving the
desired accuracy. Correctness proofs will be facilitated by making the chosen approximations
explicit.

 7.3. Compactness. We would like to compare the computing expense of solving a sample
of numerical problems using a fixed-length floating-point representation with the expense using
our representation. To make the comparison, it would be unfair to use existing programs, since
they are designed to run on existing floating-point machines. We should proceed as follows.
 1. Ascertain the accuracy achieved by each of the existing programs for floating-point.
 2. Write programs for our representation that achieve the same accuracy as cheaply as

22.44578

b−k

Hehner, Horspool: a New Representation of the Rational Numbers ���11

 possible. This requires numerical analysis that has not yet been developed.
 3. Compare the cost of running the programs on their respective machines.
Even then, the comparison will be biased in favor of fixed-length floating-point, since its users
are not given the option of more or less accuracy. Needless to say, we have not made the desired
comparison.
 We have, however, tested our representation on integer data (Hehner 1976). Our sample
was a large, well-known compiler (XCOM, the compiler for XPL (McKeeman 1970)). The
integer constants in the program require, on average, 5.7 bits each. A complete trace of the values
of all integer variables and integer-valued array elements during an execution of the program
(compiling itself) revealed that they require, on average, 6.4 bits each. There are some essential
overhead costs associated with the use of variable-length data items. To be easily accessible, the
data items may need to be addressed indirectly. Furthermore, memory compactions may be
necessary with data items dynamically changing in size. Even when these costs are taken into
account, there is a 31% saving compared to a 32-bit fixed-length encoding. (The cost is
measured as a space-time product, since space is being traded for time when using a variable-
length encoding.) Therefore, for this data, our representation is significantly more economical
than a well-known standard.

 8. Conclusion. The representation of the rational numbers presented in this paper has
several appealing properties. Given the usual representation of the positive integers, it is, in a
genuine sense, the natural extension to the rationals. The algorithms for addition, subtraction, and
multiplication are those of the usual integer arithmetic; the division algorithm is truly the
analogue of multiplication.
 The complexity of rational arithmetic in numerator/denominator form has not been
reduced by our representation, but it has been redistributed and its character has changed. For
humans, the problems of detecting a repeated state and normalization have the character of a
pattern-match. If they can be solved economically for computers, then we believe rational
arithmetic with programmer-controlled accuracy will become an attractive proposition.
 The notation introduced in this paper may be generalized in several directions. For
integer base b > 1, the digit set can represent any b integers that are all different modulo b
(balanced ternary is a special case). The base need not be a positive integer. And the
representation can be used for rational power series. Krishnamurthy has considered the use of a
fixed-length truncation of p-adic numbers with the result that arithmetic is exact within a limited
range (Krishnamurthy 1977).

 Acknowledgments. We thank Art Sedgwick and Bill McKeeman for their interest in and
comments on this work. We especially thank Don Knuth for informing us of previous related
work.

REFERENCES

A. AVlZIENIS (1971), Digital Computer Arithmetic: A Unified Algorithmic Specification, Proc. Symposium on
 Computers and Automata. Polytechnic Press. Polytechnic Institute. Brooklyn, NY.
R. BRENT (1978), communicated via D. E. Knuth.
EDSGER W. DIJKSTRA (1977), An interview with prof. dr. Edsger W. Dijkstra, Datamation, 23. no. 5, p. 164.
E. C. R. HEHNER (1976). Computer design to minimize memory requirements, Computer, 9. no. 8. pp. 65-70.

Hehner, Horspool: a New Representation of the Rational Numbers ���12

K. HENSEL (1908). Theorie der algebraischen Zahlen, Leipzig-Berlin.
— (1913), Zahlentheorie, Berlin-Leipzig.
B. K. P. HORN (1977), Rational Arithmetic for Minicomputers, MIT Press, Cambridge, MA.
D. E. KNUTH (1960), An Imaginary Number System, Comm. ACM. 3, pp. 245-247.
— (1969a). Seminumerical algorithms, The Art of Computer Programming, vol. 2. Addison-Wesley, Reading,
 MA.
— (1969b). Ibid., § 4.1. ex. 31, p. 179.
E. V. KRISHNAMURTHY (1977), Matrix processors using p-adir arithmetic for exact linear computations, IEEE
 Trans. Computers, C-26. pp. 633-639.
W. M. MCKEEMAN, J. J. HORNING AND D. B. WORTMAN (1970), A Compiler Generator, Prentice-Hall,
 Englewood Cliffs. NJ.
G. F. SONGSTER (1963), Negative base number representation systems, IEEE Trans. Computers. EC-l 2, pp.
 274-577.
W. T. WILNER (1975). Design of the B1700, Proceedings of AFIPS 1972, FJCC vol. 41, AFIPS Press,
 Montvale, NJ, pp. 489-497.

This paper is published in SIAM J. Comput. 8 no.2 pp.124-134, May 1979.

Appendix added later

Here is an example multiplication in detail, with line numbers for reference in the explanation
below: 1'01 × 1'0 = 110 .

0 0'
1 + 0'
2 0'
3 + 1'0 1
4 1'0 1
5 + 1'0 1
6 1'0 1 1
7 + 1'0 1
8 1'0 1 0
9 + 1'0 1
10 1'0 1 0

The multiplicand is 1'01 . The multiplier is 1'0 and we will be examining its bits from right
to left. On line 0 start with 0' because you are accumulating a sum. The rightmost bit of the
multiplier is 0 so add 0' on line 1 to obtain the sum 0' on line 2. The next bit of the
multiplier is 1 so add the multiplicand shifted left on line 3 to obtain the sum on line 4 but don't
bother to write the rightmost bit of the sum. The next bit of the multiplier is 1 so add the
multiplicand shifted left on line 5 to obtain the sum on line 6 but don't bother to write the
rightmost bit of the sum. The next bit of the multiplier is 1 so add the multiplicand shifted left
on line 7 to obtain the sum on line 8 but don't bother to write the rightmost bit of the sum. The
next bit of the multiplier is 1 so add the multiplicand shifted left on line 9 to obtain the sum on

Hehner, Horspool: a New Representation of the Rational Numbers ���13

line 10 but don't bother to write the rightmost bit of the sum. Each time you obtain a sum, check
to see if you have obtained that sum before. The sum on line 10 is the same as the sum on line 8,
so you're done. The answer, from right to left, is the rightmost bits of the sums. Line 2 gives
0 , line 4 gives 1 , line 6 gives 1 , and line 8 gives 0 . So that's 0110 . Line 10 was a
repetition of the immediately preceding sum, so the quote mark is one digit from the left. That's
0'110 . When a number starts with 0' , we usually don't bother to write it, so the answer is
110 .

Now let's do the same example the other way round: 1'0 × 1'01 = 110 .

0 0'
1 + 1'0
2 1'0
3 + 0'
4 1'
5 + 1'0
6 1'0 1
7 + 1'0
8 1'0 0
9 + 1'0
10 1'0 0

The multiplicand is 1'0 . The multiplier is 1'01 and we will be examining its bits from right
to left. On line 0 start with 0' . The rightmost bit of the multiplier 1'01 is 1 so add the
multiplicand 1'0 on line 1 to obtain the sum 1'0 on line 2. The next bit of the multiplier is
0 so add 0' shifted left on line 3 to obtain the sum on line 4 but don't bother to write the
rightmost bit of the sum. The next bit of the multiplier is 1 so add the multiplicand shifted left
on line 5 to obtain the sum on line 6 but don't bother to write the rightmost bit of the sum. The
next bit of the multiplier is 1 so add the multiplicand shifted left on line 7 to obtain the sum on
line 8 but don't bother to write the rightmost bit of the sum. The next bit of the multiplier is 1
so add the multiplicand shifted left on line 9 to obtain the sum on line 10 but don't bother to write
the rightmost bit of the sum. Each time you obtain a sum, check to see if you have obtained that
sum before. The sum on line 10 is the same as the sum on line 8, so you're done. The answer,
from right to left, is the rightmost bits of the sums. Line 2 gives 0 , line 4 gives 1 , line 6 gives
1 , and line 8 gives 0 . So that's 0110 . Line 10 was a repetition of the immediately preceding
sum, so the quote mark is one digit from the left. That's 0'110 , or 110 .

Appendix added later

Here is a worst-case calculation, in which the result is maximal length for the lengths of the
operands: 1 / 59 in binary is 59 bits long.

1/111011 = 0111110111010100100111000011010000010001010110110001111001'1

Hehner, Horspool: a New Representation of the Rational Numbers ���14

The bottom line is identical, except for the final 0, to the very first difference. That tells us
where to put the quote. The entire calculation is 30 subtractions, and that's how many 1s are in
the answer.

 1
 1 1 1 0 1 1
 1’0 0 0 1 1
 1 1 1 0 1 1
 1’0 1 0 1 0 0
 1 1 1 0 1 1
 1’0 1 1 1 0 1
 1 1 1 0 1 1
 1’0 1 0 0 0 1
 1 1 1 0 1 1
 1’0 0 1 0 1 1
 1 1 1 0 1 1
 1’0 0 1 0 0 0
 1 1 1 0 1 1
 1’0 1 1 1 1 1
 1 1 1 0 1 1
 1’0 1 0 0 1 0
 1 1 1 0 1 1
 1’0 1 0 1 1 1
 1 1 1 0 1
 1’0 0 1 1 1 0
 1 1 1 0 1 1
 1’0 1 0 1 1 0
 1 1 1 0 1 1
 1’0 1 1 0 0 0
 1 1 1 0 1
 1’0 0 0 0 0
 1 1 1 0 1 1
 1’0 0 0 1 0
 1 1 1 0 1 1
 1’0 1 1 0 1 1
 1 1 1 0 1 1
 1’0 1 0 0 0 0
 1 1 1 0 1 1
 1’0 0 0 0 1
 1 1 1 0 1 1
 1’0 1 0 0 1 1
 1 1 1 0 1 1
 1’0 0 1 1 0 0
 1 1 1 0 1 1
 1’0 1 1 1 0 0
 1 1 1 0 1 1
 1’0 1 1 1 1 0
 1 1 1 0 1 1
 1’0 1 1 0 1 0
 1 1 1 0 1 1
 1’0 1 1 0 0 1
 1 1 1 0 1 1
 1’0 0 1 1 1 1
 1 1 1 0 1 1
 1’0 0 1 0 1 0
 1 1 1 0 1 1
 1’0 1 0 1 0 1
 1 1 1 0 1 1
 1’0 0 1 1 0 1
 1 1 1 0 1 1
 1’0 0 1 0 0 1
 1 1 1 0 1 1
 1’0 0 0 1 1 1
 1 1 1 0 1 1
1’0 0 0 1 1 0

