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     Abstract. A novel system for representing the rational numbers based on Hensel's p-adic arithmetic is proposed. 
The new scheme uses a compact variable-length encoding that may be viewed as a generalization of radix 
complement notation. It allows exact arithmetic, and approximate arithmetic under programmer control. It is 
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These attributes make the new number representation attractive for use in computer hardware. 
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 1. Introduction. “It's very illuminating to think about the fact that some –at most four 
hundred– years ago, professors at European universities would tell the brilliant students that if 
they were very diligent, it was not impossible to learn how to do long division. You see, the poor 
guys had to do it in Roman numerals. Now, here you see in a nutshell what a difference there is 
in a good and bad notation.” (Dijkstra 1977) 
 We consider that a good scheme for representing numbers, especially for computers, 
would have the following characteristics. 
 (a) All rational numbers are finitely representable. This requires that the representation be 
variable-length. 
 (b) The representation is compact. It should require less space, on average, than the fixed-
length schemes commonly used in computers. Since the numbers provided by a fixed-length 
representation are not used equally often, compactness can be achieved by giving frequently-
occurring numbers short encodings at the expense of longer encodings for less-frequent numbers. 
 (c) The addition, subtraction, and multiplication algorithms are those of the usual integer 
arithmetic. The division algorithm is as easy as multiplication, and it proceeds in the same 
direction as the other three algorithms. This property is important for the storage and retrieval of 
variable-length operands and results.  
 Although the desired representation is variable-length, there is no implication that 
operations must be performed serially by digit. Just as data can be retrieved and stored d digits at 
a time, so the arithmetic unit can be designed to perform operations d digits at a time. By 
choosing d to be large compared to the average length of operands, we can obtain the speed of a 
fixed-length design together with the ability to handle operands that are not representable in a 
fixed length (Wilner 1972). 

 2. Background. Before we present our proposal, we shall briefly review representations 
in common use. (For their history, see (Knuth 1969a).) 
 Almost universally, the sequence of digits  · · · di · · · d3 d2 d1 d0  is used to represent the 
nonnegative integer  

where b (the base) is an integer greater than one (usually two or ten), and each digit  di , 
represents an integer in the range  0 ≤ di < b .  As a rule, we do not write leading 0s. We must 
break the rule, however, to represent zero (if we follow it, there is nothing to write). 

n = dib
i

i
∑
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 There is no direct representation of negative integers in common use. Instead we prefix a 
unary operator to the representation of positive integers. The combination of “sign and 
magnitude” is indirect because, to perform arithmetic, we may first have to apply some algebraic 
transformations. If asked to add two numbers, we first examine the signs to determine whether to 
use the addition or subtraction algorithm; if we are using the subtraction algorithm, we compare 
the magnitudes to determine which is to be subtrahend, and which minuend. With a direct 
representation, if asked to add, we simply add. The radix complement representation is direct in 
this sense, but it includes only a finite subset of the integers. 
 Rationals are commonly represented by a pair of integers:  a numerator and denominator. 
In this form, multiplication and division are reasonably easy, but addition and subtraction are 
relatively hard, and normalization is difficult (Horn 1977). When addition and subtraction are 
wanted more often than multiplication and division, a representation that makes the former easier 
at the expense of the latter would be preferable. For this reason, we usually restrict our numbers 
to a subset of the rationals known as the “fixed-point” or “floating-point” numbers. By inserting 
a radix point in a sequence of digits (fixed-point), or indicating by means of an exponent where a 
radix point should be placed (floating-point), we represent those rationals such that, in lowest 
terms, the denominator divides some power of the base. In this form, addition and subtraction 
are, after alignment of the radix point, the same as for integers. With a variable-length 
representation, a major difficulty with the usual division algorithm is that it proceeds from left to 
right, opposite to the direction of the other three algorithms. To simplify retrieval, processing, 
and storage, all algorithms should examine their operands and produce their results in the same 
direction.  
 The left-to-right division algorithm gives us a way of extending the fixed/floating point 
representation to include all positive rationals: an infinite but eventually repeating sequence of 
digits can be finitely denoted by indicating the repeating portion. On paper, the repeating portion 
is sometimes denoted by overscoring it; for example, . A minor annoyance is 
the fact that representations are not unique; for example,  and . A major 
annoyance is that further arithmetic is awkward: addition normally begins with the rightmost 
digit, but a sequence that extends infinitely to the right has no rightmost digit. 
 The usual representation of nonnegative integers can be extended in various ways. The 
base may be negative (Songster 1963), or even imaginary (Knuth 1960). In the “balanced 
ternary” representation (Avizienis 1971), the base is three, and the digits represent the integers 
minus-one, zero, and one. Our extension, which we now present, is in quite a different direction. 

 3. Constructing the representation. To construct our representation, we shall follow the 
approach of Hensel's p-adic arithmetic (Hensel 1908, 1913). We begin with the usual 
representation of nonnegative integers, that is, a sequence of digits  · · · d3 d2 d1 d0 .  Each digit 
di represents an integer in the range  0 ≤ di < b , where the base b is an integer greater than one. 
We then constructs the representation of other numbers (all rationals, some irrationals and some 
imaginary numbers (Knuth 1969b)) by means of arithmetic. We shall limit ourselves to rational 
numbers, and give a finite representation of them that is implementable in computer hardware. 

 3.1. Addition, subtraction and multiplication. For the addition and subtraction 
algorithms, we adopt the usual algorithms for positive integers, with one qualification. When 
subtracting a digit of the subtrahend from a smaller digit of the minuend, rather than “borrow” 
one from a minuend digit some distance away, we “carry” one to the immediately neighboring 

611/ 495 = 1.234
0.9 = 1 0.49 = 0.5
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digit of the subtrahend. For example,  
  2 7 0 0 4
–   31 51 216___________
  2 3 4 7 8 

beginning at the right, we subtract 6 from 4 to get 8 with a carry; then, rather than subtracting the 
2 in the next position, we subtract 3 from 0 to get 7 with a carry; etc. Whether we “carry” or 
“borrow” is inconsequential; the important point is that we affect only the immediately 
neighboring digit, not a digit an arbitrary distance away.  This form of subtraction is usual in 
circuit design; it is crucial to our number representation.  
 We now construct minus-one by subtracting one from zero.  

 ··· 0 0 0 0
–··· 01 01 011_____________
 ··· 9 9 9 9

Beginning at the right, the subtraction algorithm generates a sequence of 9s. Though the 
sequence is unending, it is repetitive, and can be specified finitely. We shall use a quote 
(quotation mark) to mean that the digit(s) to its left is (are) to be repeated indefinitely to the left. 
Twenty-five, for example, is represented by 0'25 or by 0'025 or by 00'25. The first of these is 
called “normalized”; in general, a representation is normalized when it is as short as possible. A 
table of normalized representations of integers follows; each entry specifies the usual 
representation together with our representation.  

0:  0'
1:  0'1 -1:  9'
2:  0'2 -2:  9'8
3:  0'3 -3:  9'7
: :

9:  0'9 -9:  9'1
10:  0'10 -10:  9'0 
11:  0'11 -11:  9'89

: :

For brevity on the written page (the abbreviation is inapplicable in computer memories), we 
make the convention that when no quote appears in a number, 0' is assumed to be appended to its 
left. Thus the positive integers take their familiar form.  
 The reader may verify, with examples, that the addition and subtraction algorithms work 
consistently throughout the scheme. This is no surprise to anyone familiar with radix 
complement arithmetic, for the similarity is apparent. The rule for negation is the radix 
complement rule: complement each digit (in decimal, change 0 to 9, 1 to 8, 2 to 7, etc.) and then 
add one. (Negation can be performed more simply; for example, in binary starting at the right, 
leave trailing 0s and rightmost 1 alone, flip the rest.) The definition of radix complement is made 
in terms of a fixed-size space available for storing numbers in computers (the “word”); for 
example, if w bits are available for encoding integers, two's complement is defined by 
performing arithmetic modulo 2w. We prefer to define it independent of space constraints, and to 
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view the fixed-size scheme as a truncation of p-adic numbers to w bits. Radix complement is 
often preferred in computers because of its nice arithmetic properties; our finite representation of 
p-adic rationals enjoys these properties without suffering from the wasted space and overflow 
problems inherent in a fixed-length representation.  
 The usual multiplication algorithm need not be altered for use with negative integers. For 
example, multiplying minus-two by three, either way round, yields the desired result.  

  9'8               3
×   3           × 9'8
  9'4             2 4

              2 7
          2 7
           :
           :    

                  9'4

 3.2 Division. Before we present the division algorithm, let us look at a simple example. 
Since 9' represents minus-one, we may expect division by 3 to give 3' as the representation of 
minus-one-third. Let us test the consistency of this representation with our arithmetic. To negate, 
we first complement, obtaining 6' (since 6' is double 3', it represents minus-two-thirds); then we 
add one, obtaining 6'7 as our representation of one-third. Subtracting 3' from 0' also produces 6'7. 
Multiplying 6'7 by 3 yields 1, confirming its consistency.  

0'-1 = 9'  (minus-one)
      9' 3 = 3'  (minus-one-third)

complement of 3' = 6'
or          3'×2 = 6'  (minus-two-thirds)

 6'+1 = 6'7 (one-third)
or          0'-3'= 6'7

6'7 ×3 = 1

 We now present the division algorithm by means of an example. For the moment, we 
restrict ourselves to integer dividends and divisors, and further to divisors whose rightmost digit 
is nonzero and relatively prime to the base. (Two integers are relatively prime if and only if their 
only common divisor is 1. In decimal, the divisor's final digit must be 1, 3, 7, or 9.) We shall 
remove all restrictions shortly.  
 For our example, we divide 191 by 33. The rightmost digit of the result, d0, when 
multiplied by the rightmost digit of the divisor, 3, must produce a number whose rightmost digit 
is the rightmost digit of the dividend, 1. Our restrictions ensure that there is exactly one such 
digit: d0×3 must end with 1, therefore d0=7. We subtract 7×33 from 191; ignoring the rightmost 
digit, which must be 0, we use the difference in place of the dividend, and repeat. 

÷
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    1 9 1  3 3 = 1 2'7
  - 2 3 1
    9'6
  - 6 6
  9'3
- 3 3
9'6

When the difference is one we have seen before, we can insert the quote, and stop. 
 Like multiplication, the division algorithm produces each digit by table look-up. 
Compare this with the left-to-right division algorithm: a “hand calculation” requires a guess that 
may need to be revised; a “machine calculation” requires repeated subtraction to produce each 
digit of the result. 
 The right-to-left division algorithm is well-defined only when the divisor's final digit is 
relatively prime to the base. For example, an attempt to divide 1 by 2 in decimal fails because no 
multiple of 2 has 1 as its final digit. Therefore, the means presented so far enable us to represent 
only a subset of the rationals: those rationals such that, in lowest terms, the denominator has no 
factors that are factors of the base. Compare this with the fixed/floating-point representation; it 
represents those rationals such that, in lowest terms, the denominator has only factors that are 
factors of the base. The two representations are, in a sense, complementary; combining them, we 
are able to represent all rationals. We allow a radix point, whose position is independent of the 
quote, or an exponent, as in scientific notation. For example,  

  12'34 10 = 12'3.4
12'3.4 10 = 12!34
  12!34 10 = 1.2'34
 1.2'34 10 = .12'34
  .12'34 10 = .21'234

The last example is probably best written with an exponent, and suggests that the more 
appropriate machine representation uses an exponent rather than a radix point. This requires a 
normalization rule: when normalized, the mantissa's rightmost digit is not 0.  Thus 12'300E2 
becomes 12'3E4, and 120'E2 becomes 012'E3. All rationals except zero have a unique 
normalized representation. 
 To divide two arbitrary integers in decimal, we must first “cast out” all 2 and 5 factors 
from the divisor. These factors can be determined, one at a time, by inspecting the divisor's final 
digit. A 2 is cast out by multiplying both dividend and divisor by 5; similarly, a 5 is cast out with 
a multiplication by 2. The generalization to arbitrary (rational) operands is now easy. 

 4. Binary is beautiful. Base two, a common choice in computers for circuit reasons, has 
two important advantages for us. First, it is a prime number. Since it has no factors, there is no 
“casting out”; division of two normalized operands can always proceed directly. Second, 
multiplication and division tables are trivial. This advantage for multiplication is well-known: 
the right-to-left division algorithm is a true analogue of multiplication, so the same advantage 
applies. At each step, the rightmost bit of the dividend remaining 
 (a) is the next bit of the result, and  

÷

÷
÷
÷
÷
÷



Hehner, Horspool:  a New Representation of the Rational Numbers ���6

 (b) specifies whether or not to subtract the divisor. 
For example, dividing 1 (one) by 11 (three) proceed as follows.  

      1 1 1 = 0 1'1
  - 1 1
    1'
- 1 1
1'0 

   -   0
1' 

1. Dividend = 1. Its rightmost bit = 1. Therefore  
 (a) Rightmost bit of result = 1. 
 (b) Subtract divisor, and ignore rightmost 0. 
2. Dividend remaining = 1'. Its rightmost bit = 1. Therefore  
 (a) Next bit of result = 1.  
 (b) Subtract divisor, and ignore rightmost 0.  
3. Dividend remaining = 1'0. Its rightmost bit = 0. Therefore  
 (a) Next bit of result = 0.  
 (b) Subtract 0; ignore rightmost 0.  
4. Dividend remaining = 1' as in step 2. Therefore insert quote after 2 bits. Result = 01'1.  

 5. Radix conversion algorithm. The algorithm for converting the representation of a 
positive integer from one base to another is well-known. The given integer is repeatedly divided 
by the base of the new representation; the sequence of remainders gives, from right to left, the 
digits of the new representation. For example, converting eleven from decimal to binary  

11 = 2×5+1 
 5 = 2×2+1 
 2 = 2×1+0 
 1 = 2×0+1 

gives 1011.The algorithm is usually considered to terminate when the quotient is zero; if it is 
allowed to continue, an endless sequence of 0s is produced.  
 Let us apply the algorithm to a negative integer. For example, converting minus-eleven 
from decimal to binary  

 -11 = 2×-6 + 1 
  -6 = 2×-3 + 0 
  -3 = 2×-2 + 1 
  -2 = 2×-1 + 0 
  -1 = 2×-1 + 1 
  -1 = 2×-1 + 1 

gives · · · 1110101, which is the p-adic form. Note that the remainders must be digits in the new 
base. By recognizing a repeated state of the computation, we are able to insert a quote and arrive 

÷
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at our finite representation 1'0101.  
 If we begin with a fraction, we must allow the quotients to be fractions. We then need an 
extra criterion to make the algorithm deterministic. For example, converting one-third to binary, 
we might begin either with  

1/3 = 2× -1/3 + 1 
or with  

1/3 = 2× 1/6 + 0     

To produce a result without a radix point, the original fraction, and each quotient fraction, in 
lowest terms, must have denominators that are relatively prime to the new base. The implied 
criterion is that the denominator must remain unchanged.  

 1/3 = 2× -1/3 +1 
-1/3 = 2× -2/3 +1 
-2/3 = 2× -1/3 +0  

When a quotient is obtained that has appeared before, a cycle is recognized. Placing the quote 
accordingly, we have produced the binary representation of one-third, namely 01'1. Thus the 
usual radix conversion algorithm naturally produces our representation.  
 In the preceding examples, we began with numbers in their familiar decimal 
representations: sign-and-magnitude, numerator/denominator. If we begin instead with our 
representation, the algorithm remains the same for rationals (without radix points) as for positive 
integers. For example, beginning with 6'7 (one-third in decimal), we see that the rightmost digit 
is odd, therefore the rightmost binary digit is 1.  

(6'7-1) 2 = 3' 
 (3'-1) 2 = 6' 
 (6'-0) 2 = 3' 

The division by two is performed as a multiplication by five, discarding the rightmost digit of the 
result, which is 0. In general, when converting from base b1 to base b2, a finite number of 
rightmost digits of each quotient is sufficient to determine the next digit of the result if all factors 
of b2 are factors of b1.  

 6. Properties of the proposed number system. Excluding the radix point or exponent, 
the general form of our representation is  

dn+mdn+m–1 · · · dn+1'dndn–1 · · · d2d1d0 

The number represented is  
 

where b is the base of the representation. To justify this formula, we shall break the digit 

÷
÷
÷

dib
i − dib

i /(bm −1)
i= n+1

n+m

∑
i= 0

n

∑
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sequence into two parts: the digits to the left of the quote will be called the “negative part”, and 
the digits to its right will be called the “positive part”. The positive part was our starting point for 
the construction of the representation.  
                    n 
     dn · · · d0  =  Σ dibi 
                  i=0 

The negative part can be found as follows.  

 dn+mdn+m–1 · · · dn+1'  =  dn+mdn+m–1 · · · dn+1'0 · · · 0 + dn+mdn+m–1 · · · dn+1 

                n+m 
     =  dn+mdn+m–1 · · · dn+1' × bm + Σ dibi–n–1 
              i=n+1 

Therefore  
                    n+m 
     dn+m · · · dn+1'  =  – Σ dibi–n–1 /(bm – 1) 
                  i=n+1 

Putting the positive and negative parts together, we find 

dn+m · · · dn+1'dn · · · d0   =   (dn+m · · · dn+1') × bn+1  +  (dn · · · d0) 

and hence we obtain the above formula.  
 From the formula, we see that sign determination is trivial. If both positive and negative 
parts are present, we merely compare their leading digits. Assuming the representation to be 
normalized,  dn+m ≠ dn . 
 If  dn+m < dn , the number is positive.  
 If  dn+m > dn , the number is negative.  
 If one part is absent, the sign is given by the part that is present. If both parts are absent, 
the number is zero.  
 The formula can be used to convert from our representation to numerator/denominator 
representation, if one so desires. For example, in decimal 12'7 = 7–120/99=191/33; in binary 
01'1=1–010/11=1/11 (one-third). From this formula, we can also derive an easy method for 
converting to a right-repeating decimal expansion (or binary expansion). Simply subtract the 
negative part from the positive part with their leading digits aligned and the negative part 
repeated indefinitely to the right.  

$  
$  
$  

The opposite conversion can be performed by reversing the steps.  

$  

12'345 = 345 – 121.21 = 223.78
123'45 = 45 – 12.312 = 32.687
43'21 = 21 – 43.43 = –22.43

2.34 = 2 – 34' = 56'8
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 The above paragraphs suggest two comparison algorithms. The first is to subtract the 
comparands, then determine the sign of the result. The second is to convert the comparands to 
right-repeating form, then perform the usual digit-by-digit comparison. The first has the 
advantage that it is a right-to-left algorithm, but the second may have an efficiency advantage.  

 7. Length of representation. When two p-adic rational numbers are added, subtracted, 
multiplied, or divided, the result is an infinite but eventually repeating sequence of digits. For 
termination of the arithmetic algorithms, and for finite representation of the result (placing the 
quote), one must be able to recognize when the state of the computation is one that has occurred 
before. In a hand calculation, recognition poses no problem: one merely scans the page. The 
analogous approach for machines requires the arithmetic unit to contain some associative 
memory. Each state of the computation is compared (associatively, in parallel) with all stored 
states; if a match is found, the operation is complete, otherwise the state is stored and the 
operation continues. The resulting digit sequence must be checked for normalization.  
 A method of recognizing the repeated state that requires storing only one state, at the 
expense of possibly delaying recognition by a few digits, is the following (Brent 1978). If the 
states are S1, S2, S3,· ·  ·, then test (S1 vs. S2), (S2, vs. S3, S4), (S4 vs. S5,· ·  ·,S8), etc., until a 
match is found. Again, the resulting digit sequence must be normalized. 

 7.1. Length Bounds. An alternative method of implementing the arithmetic algorithms is 
as follows:  
 (a) calculate a bound for the length (number of digits) of the result;  
 (b) calculate a correct, though not necessarily minimal, length for the negative (repeating)  
       part;  
 (c) produce a sufficient number of digits to ensure that a repetition of the length  
       calculated in (b) has occurred;  
 (d) normalize the result.  
This approach obviates the need to recognize a repeated state. However, the complexity of our 
formulae for the length bounds makes the approach unattractive.  
 The bounds are summarized in Table 1. The notation used in the table is the following.  
b: the base of the representation  
pi: the length of the positive part (i.e. the number of digits to the right of the quote) in the base p 
representation of xi  
ni: the length of the negative part (i.e. the number of digits to the left of the quote) in the base p 
representation of xi 
∅: Euler's ∅ function; ∅(m) is defined, for positive integer m, as the number of positive integers 
not exceeding m that are relatively prime to m.  
  

Table 1 
Length Bounds 

 x3=x1+x2 p3≤MAX(p1,p2)+n3+2 
 x3=x1–x2 n3 is a divisor of LCM(n1,n2) 
 x3=x1×x2 p3≤p1+p2+n3+1 
  n3 is a divisor of LCM(n1,n2) 
 x3=x1÷x2 p3≤p1+p2+n3+1 if p2≤n2 
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  p3≤p1–p2+n3+1 if n2<p2≤p1 
  p3≤n3+1 if p1,n2<p2 
  n3 is a divisor of LCM(n1,∅(x2(bn2–1))) 

 7.2. Approximation. Our representation provides a service that is unavailable to users of 
fixed-length floating-point hardware: exact results. As arithmetic operators are applied 
repeatedly during a computation, this extra service may begin to cost extra: the length of 
representation of the results may tend to grow. As the lengths grow, storage costs increase; as the 
lengths become greater than the number of digits that a data path or arithmetic unit can 
accommodate at one time, processing time increases. Many users do not require perfect accuracy, 
and are unwilling to pay extra for it.  
 Users of fixed-length floating-point hardware have their accuracy and expense chosen for 
them by the computer designer. The designer's impossible task is to choose one accuracy and 
expense (amount of storage per number) to satisfy all users at all times. Some designers give 
their users a choice of two accuracies (single and double precision); it seems preferable to allow 
each user to choose any accuracy, from none to complete.  
 For reasons of mathematical cleanliness, we prefer not to provide approximate versions 
of the addition, subtraction, multiplication, and division operators, but to provide a separate 
approximation operator. Two possible (and ideal) forms of this operator are:  

 (a) Given a number n, and a number of digits d,  n@d  is a number that is closest to n and  
      whose representation has no more than d digits.  
 (b) Given a number n, and a tolerance t,  n@t  is a number in the range  n ± nt  whose  
      representation is shortest.  

In either form, the problem of finding a “closest” or “shortest” result is a hard one; in practice, a 
reasonably close or short result is easy to obtain, and acceptable. One method is to convert the 
number to right-repeating form (using the algorithm in §6) and then truncate the result. For 
example, 12'34.567 is first converted to  and this may be approximated to 0'22.4458, to 
0'22.436, or to 0'22.45, etc. In general, if the final truncated result has k digits to the right of the 
radix point, then it is easy to show that the error introduced by the approximation is less than  

 where b is the base of the number system. This form of approximation corresponds to the 
first style of approximation operator given above.  
 The role of the numerical analyst has traditionally been to analyze the accuracy (error) 
provided by the manufacturer, and to design algorithms which make the best use of this accuracy 
(i.e., whose final result is most accurate). With our proposal, the numerical analyst's role will be 
to choose approximations that make a computation as cheap as possible, while achieving the 
desired accuracy. Correctness proofs will be facilitated by making the chosen approximations 
explicit.  

 7.3. Compactness. We would like to compare the computing expense of solving a sample 
of numerical problems using a fixed-length floating-point representation with the expense using 
our representation. To make the comparison, it would be unfair to use existing programs, since 
they are designed to run on existing floating-point machines. We should proceed as follows.  
 1. Ascertain the accuracy achieved by each of the existing programs for floating-point.  
 2. Write programs for our representation that achieve the same accuracy as cheaply as  

22.44578

b−k
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      possible. This requires numerical analysis that has not yet been developed.  
 3. Compare the cost of running the programs on their respective machines.  
Even then, the comparison will be biased in favor of fixed-length floating-point, since its users 
are not given the option of more or less accuracy. Needless to say, we have not made the desired 
comparison.  
 We have, however, tested our representation on integer data (Hehner 1976). Our sample 
was a large, well-known compiler (XCOM, the compiler for XPL (McKeeman 1970)). The 
integer constants in the program require, on average, 5.7 bits each. A complete trace of the values 
of all integer variables and integer-valued array elements during an execution of the program 
(compiling itself) revealed that they require, on average, 6.4 bits each. There are some essential 
overhead costs associated with the use of variable-length data items. To be easily accessible, the 
data items may need to be addressed indirectly. Furthermore, memory compactions may be 
necessary with data items dynamically changing in size. Even when these costs are taken into 
account, there is a 31% saving compared to a 32-bit fixed-length encoding. (The cost is 
measured as a space-time product, since space is being traded for time when using a variable-
length encoding.) Therefore, for this data, our representation is significantly more economical 
than a well-known standard.  

 8. Conclusion. The representation of the rational numbers presented in this paper has 
several appealing properties. Given the usual representation of the positive integers, it is, in a 
genuine sense, the natural extension to the rationals. The algorithms for addition, subtraction, and 
multiplication are those of the usual integer arithmetic; the division algorithm is truly the 
analogue of multiplication.  
 The complexity of rational arithmetic in numerator/denominator form has not been 
reduced by our representation, but it has been redistributed and its character has changed. For 
humans, the problems of detecting a repeated state and normalization have the character of a 
pattern-match. If they can be solved economically for computers, then we believe rational 
arithmetic with programmer-controlled accuracy will become an attractive proposition.  
 The notation introduced in this paper may be generalized in several directions. For 
integer base b > 1, the digit set can represent any b integers that are all different modulo b 
(balanced ternary is a special case). The base need not be a positive integer. And the 
representation can be used for rational power series. Krishnamurthy has considered the use of a 
fixed-length truncation of p-adic numbers with the result that arithmetic is exact within a limited 
range (Krishnamurthy 1977).  
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Appendix added later 

Here is an example multiplication in detail, with line numbers for reference in the explanation 
below:  1'01 × 1'0  =  110 .

0                       0'
1                     + 0'
2                       0'
3               + 1'0 1
4                 1'0 1
5             + 1'0 1
6             1'0 1 1
7           + 1'0 1
8           1'0 1 0
9         + 1'0 1
10        1'0 1 0

The multiplicand is  1'01 .  The multiplier is  1'0  and we will be examining its bits from right 
to left.  On line 0 start with  0' because you are accumulating a sum.  The rightmost bit of the 
multiplier is  0 so add  0' on line 1 to obtain the sum  0' on line 2.  The next bit of the 
multiplier is  1 so add the multiplicand shifted left on line 3 to obtain the sum on line 4 but don't 
bother to write the rightmost bit of the sum.  The next bit of the multiplier is  1 so add the 
multiplicand shifted left  on line 5 to obtain the sum on line 6 but  don't  bother to write the 
rightmost bit of the sum.  The next bit of the multiplier is  1 so add the multiplicand shifted left 
on line 7 to obtain the sum on line 8 but don't bother to write the rightmost bit of the sum.  The 
next bit of the multiplier is 1 so add the multiplicand shifted left on line 9 to obtain the sum on 
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line 10 but don't bother to write the rightmost bit of the sum.  Each time you obtain a sum, check 
to see if you have obtained that sum before.  The sum on line 10 is the same as the sum on line 8, 
so you're done.  The answer, from right to left, is the rightmost bits of the sums.  Line 2 gives  
0 , line 4 gives  1 , line 6 gives  1 , and line 8 gives  0 .  So that's  0110 .  Line 10 was a 
repetition of the immediately preceding sum, so the quote mark is one digit from the left.  That's  
0'110 .  When a number starts with  0' , we usually don't bother to write it, so the answer is  
110 . 

Now let's do the same example the other way round:  1'0 × 1'01  =  110 . 

0                       0'
1                   + 1'0
2                     1'0
3                   + 0'
4                     1'
5               + 1'0
6               1'0 1
7             + 1'0
8             1'0 0
9           + 1'0
10          1'0 0

The multiplicand is  1'0 .  The multiplier is  1'01  and we will be examining its bits from right 
to left.  On line 0 start with  0' .  The rightmost bit of the multiplier  1'01 is 1 so add the 
multiplicand  1'0 on line 1 to obtain the sum  1'0 on line 2.  The next bit of the multiplier is  
0 so add  0' shifted left on line 3 to obtain the sum on line 4 but don't bother to write the 
rightmost bit of the sum.  The next bit of the multiplier is  1 so add the multiplicand shifted left 
on line 5 to obtain the sum on line 6 but don't bother to write the rightmost bit of the sum.  The 
next bit of the multiplier is  1 so add the multiplicand shifted left on line 7 to obtain the sum on 
line 8 but don't bother to write the rightmost bit of the sum.  The next bit of the multiplier is  1 
so add the multiplicand shifted left on line 9 to obtain the sum on line 10 but don't bother to write 
the rightmost bit of the sum.  Each time you obtain a sum, check to see if you have obtained that 
sum before.  The sum on line 10 is the same as the sum on line 8, so you're done.  The answer, 
from right to left, is the rightmost bits of the sums.  Line 2 gives  0 , line 4 gives  1 , line 6 gives  
1 , and line 8 gives  0 . So that's  0110 .  Line 10 was a repetition of the immediately preceding 
sum, so the quote mark is one digit from the left.  That's  0'110 , or 110 .

Appendix added later 

Here is a worst-case calculation, in which the result is maximal length for the lengths of the 
operands:  1 / 59  in binary is 59 bits long. 

1/111011 = 0111110111010100100111000011010000010001010110110001111001'1 
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The bottom line is identical, except for the final 0, to the very first difference.  That tells us 
where to put the quote.  The entire calculation is 30 subtractions, and that's how many 1s are in 
the answer. 

                                                                                                                              1
                                                                                                                    1 1 1 0 1 1
                                                                                                                  1’0 0 0 1 1
                                                                                                                  1 1 1 0 1 1
                                                                                                              1’0 1 0 1 0 0
                                                                                                            1 1 1 0 1 1
                                                                                                        1’0 1 1 1 0 1
                                                                                                          1 1 1 0 1 1
                                                                                                      1’0 1 0 0 0 1
                                                                                                        1 1 1 0 1 1
                                                                                                    1’0 0 1 0 1 1
                                                                                                      1 1 1 0 1 1
                                                                                                  1’0 0 1 0 0 0
                                                                                              1 1 1 0 1 1
                                                                                          1’0 1 1 1 1 1
                                                                                            1 1 1 0 1 1
                                                                                        1’0 1 0 0 1 0
                                                                                        1 1 1 0 1 1
                                                                                    1’0 1 0 1 1 1
                                                                                        1 1 1 0 1
                                                                                    1’0 0 1 1 1 0
                                                                                    1 1 1 0 1 1
                                                                                1’0 1 0 1 1 0
                                                                                1 1 1 0 1 1
                                                                            1’0 1 1 0 0 0
                                                                          1 1 1 0 1
                                                                      1’0 0 0 0 0
                                                            1 1 1 0 1 1
                                                           1’0 0 0 1 0
                                                        1 1 1 0 1 1
                                                    1’0 1 1 0 1 1
                                                      1 1 1 0 1 1
                                                  1’0 1 0 0 0 0
                                            1 1 1 0 1 1
                                          1’0 0 0 0 1
                                          1 1 1 0 1 1
                                      1’0 1 0 0 1 1
                                        1 1 1 0 1 1
                                    1’0 0 1 1 0 0
                                  1 1 1 0 1 1
                              1’0 1 1 1 0 0
                            1 1 1 0 1 1
                        1’0 1 1 1 1 0
                        1 1 1 0 1 1
                    1’0 1 1 0 1 0
                    1 1 1 0 1 1
                1’0 1 1 0 0 1
                  1 1 1 0 1 1
              1’0 0 1 1 1 1
                1 1 1 0 1 1
            1’0 0 1 0 1 0
            1 1 1 0 1 1
        1’0 1 0 1 0 1
          1 1 1 0 1 1
      1’0 0 1 1 0 1
        1 1 1 0 1 1
    1’0 0 1 0 0 1
      1 1 1 0 1 1
  1’0 0 0 1 1 1
    1 1 1 0 1 1
1’0 0 0 1 1 0


