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Abstract: - We present a new way to implement ordinary programs with logic gates. and a new method of timing within 
circuits, and a new method of circuit verification.  Application-specific circuit design can be done more effectively by using a 
standard programming language to describe the function that a circuit is intended to perform, rather than by describing a circuit 
that is intended to perform that function.  The circuits are produced automatically;  they behave according to the programs, and 
have the same structure as the programs.  For timing we use local delays, rather than a global clock or local handshaking.  
We give a formal semantics for both programs and circuits in order to prove our circuits correct.
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1  Introduction
The usual alternative to building application-specific circuits 
is to use a general-purpose processor, and customize it for an 
application by writing a program.  But for some 
applications, particularly where speed of execution or 
security is important, a custom-built circuit has some 
advantages over the usual processor-and-software 
combination.  The speed is improved by the absence of the 
“machine-language” layer of circuitry with its “fetch-
execute” cycle of interpretation, and by the ease with which 
we can introduce parallelism.  Security is improved by the 
impossibility of reprogramming.  In addition, unless the 
application requires a lengthy algorithm, there are space 
savings compared to a combination of software and 
processor.

The VHDL [8] and Verilog [13] languages are presently 
being used by industry.  There are interactive synthesis tools 
to aid in the construction of circuits from subsets of these 
languages.  The circuits are then “verified” by simulation.

We do not present a new language for circuit design.  
Instead, we advocate using a standard programming language 
(for example, C), not to describe circuits, but to describe 
algorithms.  The resulting circuits are produced 
automatically;  they behave according to the programs, and 
have the same structure as the programs.  For timing we use 
local delays, rather than a global clock (synchronous) or 
local handshaking (asynchronous).  We give a formal 
semantics for both programs and circuits in order to prove 
our circuits correct, using a theory presented in [5].

There are other high-level circuit design techniques 
being developed and reported in the literature.  Early work 
includes [11], [12], and [4].  In [3] and [7], a circuit is 
specified in a subset of CSP as a set of communicating 
processes, and is transformed into circuits via an 
intermediate mapping to production rules.  A similar 

approach (and a similar circuit design language) is used in 
[1] and [2], except that specifications are mapped into 
connections of small components for which standard 
transistor implementations exist.  In [14] circuits are 
modeled as networks of finite state machines, and their 
formalism is used to assist in proving the correctness of 
their compiled circuits.  The works of [6] and [10] are most 
similar to ours, but their designs have a global clock;  ours 
do not.

2  Time
Ideally, we might suppose that circuit components act 
instantly, with no gate delays, and are represented accurately 
by timeless boolean expressions.  Realistically, there are 
gate delays, and sometimes there are transient signals 
(glitches) while a circuit settles into a stable state.  We must 
introduce a timing discipline to ensure that we do not 
require, and are not affected by, a result before it is ready.  
We can consider time to be continuous or discrete;  nothing 
in this paper will depend on that choice.

To talk about time, we find it convenient to introduce 
the operator   , pronounced “delay” or “previous”.  It gives 
the value that its operand had previously, a short time ago.  
Its circuit graphic is similarly a triangle.  Whenever we need 
to say formally what constraints a delay time must satisfy,  
we write it to the left of the delay operator, and inside its 
circuit graphic.

Delay time is dependent on context and technology, it is 
usually determined by experiment, and can be known only 
approximately, say with an upper and lower bound.  
Sometimes we want the delay to be as short as possible;  
when that is the case, signal propagation time through the 
wire and surrounding gates is sufficient, and no extra 
circuitry is required.  When more delay is needed, it can be 



implemented as an even number of negations, or by a 
suitable choice of layout;  these implementations are not 
subject to glitches, and so do not raise again the problem 
they are solving.  In addition to its logical use, the delay 
sometimes has the electrical job of reshaping a pulse, both 
height and width, to compensate for degradation.  But that is 
a level of detail below our concern.

As a formal requirement, for proof of correctness, we 
need to define the output of a delay to be initially    for the 
delay time, and thereafter it is the same as the input but 
delayed.  This initial    is the only initialization in our 
circuits;  we don't consider initialization circuitry in this 
paper.  (We use    for low voltage, ground, or false, and    
for high voltage, power, or true.)

3  Merge
A merge turns two sequences of pulses into a single 
sequence of pulses.  (A pulse is a momentary   ).  The 1-
2-merge has inputs  a  and  b  and output  q .  It outputs a 
pulse when pulses arrive on  a  and  b  in that order, or 
simultaneously, but not in the other order.  To design a 1-2-
merge, we introduce an internal wire  A  with the meaning “ 
a  is    or has been   ”.

A  =  (a ∨ α A)
q  =  (A ∧ b)
α ≤ (pulse time)

Unfortunately this is a one-time-only circuit;  if ever there is 
a pulse on  a , it will allow all subsequent pulses on  b  to 
pass.  To obtain a circuit that resets itself on the falling edge 
of  q  ready to be used repeatedly, we introduce one more 
internal wire  r  that is    except at the falling edge of  q .  
The circuit becomes

r  =  (q ∨ ¬γ q)
A  =  (r ∧ (a ∨ α A))
q  =  (A ∧ b)
α ≤ (pulse time)  ∧  α ≤ γ
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Internal wires can be left exposed, as in the above 
specification of 1-2-merge and the top diagram, or they can 
be hidden as in the bottom diagram and the following 
specification:

∃r , A· r  =  (q ∨ ¬γ q)
∧ A  =  (r ∧ (a ∨ α A))
∧ q  =  (A ∧ b)

If a pulse on  a  follows a pulse on  b , there must be a 
delay of at least  γ  after the end of  b  before the start of  a  
to avoid truncating the output pulse.  No circuit can 
constrain its inputs;  its context of use must constrain its 
inputs, so a constraint is expressed formally as an antecedent 
rather than a conjunct.  The circuit specification is therefore

¬(a ∧ ¬γ a ∧ b)
⇒ ∃r , A· r = (q ∨ ¬γ q)

∧ A = (r ∧ (a ∨ α A))
∧ q = (A ∧ b)

A merge that outputs a pulse when the second of the 
two input pulses arrives, regardless of their order, and resets 
itself for reuse, is as follows.  The inputs are  a  and  b  and 
the output is  q .  Internal wire  A  means “ a  is    or has 
been   ”;  internal wire  B  means “ b  is    or has been  

 ”;  internal wire  r  is    except at the falling edge of  q .  
The circuit is

r  =  (q ∨ ¬γ q)
A  =  (r ∧ (a ∨ α A))
B  =  (r ∧ (b ∨ β B))
q  =  (A ∧ B ∧  (a ∨ b))
α ≤ (pulse time)  ∧  α ≤ γ
β ≤ (pulse time)  ∧  β ≤ γ
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4  Overview
The circuits that result from the translation have two 
components: a control  I , and a memory  M , connected as 
follows.

CσRσ Wσ

s
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M
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σ Dσ
!
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↓

A thin line indicates one wire;  a thick line indicates many 
wires.  We are depicting logic, not layout;  the best place for 
a bit of memory may be with a part of the control that uses 



it. The memory consists of a word for each global variable 
and a RAM for each global array in the program.  (We 
present local variables later.  By making variables as local as 
possible, we minimize the need for the global memory.)  
Suppose the variables are  x  and  y , and the arrays are  A   
and  B .  Then there are four clock wires, called  Cx ,  Cy ,  
CA , and  CB , and collectively called  Cσ .  With one clock 
wire for each variable and each array, the variables and arrays 
can be independently and asynchronously changed.  The data 
inputs are  Dx ,  Dy ,  DA , and  DB , collectively called  
Dσ .  For the arrays, the writing address wires are  WA  and  
WB , collectively called  Wσ , and the reading address wires 
are  RA  and  RB , collectively called  Rσ .  The memory 
outputs are  x ,  y ,  A[RA]  and  B[RB] , collectively called  
σ , the state of memory.  Altogether, memory is
M  = (   x  =  (if  ¬Cx ∧ γ Cx then Dx else x)

∧  y  =  (if  ¬Cy ∧ γ Cy then Dy else y)
∧  (∀i· A[ i]  = if  ¬CA ∧ γ CA ∧ i=WA 

then DA else A[i])
∧   (∀i· B[ i]  = if  ¬CB ∧ γ CB ∧ i=WB 

then DB else B[i])  )
γ ≥ (edge time) + (negation delay)
The expression  ¬Cx ∧ Cx  says that the clock for  x  is 
down but was just previously up, so it is a falling edge.  
The Cx-delay  γ  should be just large enough to allow  Cx  
to fall and to allow that falling edge to be negated.  The Dx-
delay determines what data is latched;  for example, we 
might want the data from before the falling edge, or at its 
start, or at its end (this delay could be omitted).  The x-delay 
should be as small as possible.  Similarly for the other 
variables and arrays.

The state is input to the control, along with an initiator 
wire  s .  A pulse on  s  starts the computation.  As the 
computation progresses, the control changes the state of 
memory, thus providing itself with further input.  To 
change the value of variable  x  in memory, the control 
must send a pulse on clock wire  Cx  and the desired new 
value on wire  Dx .  If the computation is finite, then when 
it is complete, the control indicates termination by a pulse 
on the completion wire  s′ .  It is the responsibility of the 
context to ensure that the control is not restarted before it 
has completed an execution.

A program is sometimes composed of smaller 
programs.  (In other terminology, a statement is sometimes 
composed of smaller statements;  we do not distinguish 
between “program” and “statement”.)  When a program is 
composed of parts, the control will be composed of the 
controls for the parts.  To make the composition easy, we 
require of each part that its output  Dx  be    at any instant 
when it is not changing variable  x .  Then we can disjoin 
the  Dx  wires on their way to memory.  Other variables and 
arrays are similar.

IQ

M

I P

!

!

!

?

?

?
↓

Each disjunction is really many disjunctions, one for each 
bit in its operands.

It is not our intention to present a new programming 
language for circuit design;  we advocate using a standard 
programming language.  We now describe the control for a 
sampling of programming constructs from typical 
programming languages.

4.1  Construct:  empty
We begin with the simplest program:  ok  (sometimes 
called  skip ).  It is the “empty” program, whose execution 
does nothing, taking no time.  Program  ok  yields the 
control

s′=s  ∧  ¬Rσ  ∧  ¬Cσ  ∧  ¬Wσ  ∧  ¬Dσ

s s′
σ Dσ

CσWσRσ

We have shown all its inputs and outputs.  But since the  σ  
input is not connected to anything, there is no point in 
bringing those wires from memory.  And since the  Rσ  ,  
Cσ  ,  Wσ  , and  Dσ  outputs are   , there is no point in 
taking them into a disjunction.  So the circuit reduces to 
nothing, which is appropriate for a circuit that does nothing.

4.2  Construct:  delay
The next simplest program is  tick , which also does 
nothing, but takes time δ to do it.

s′=δ s  ∧  ¬Rσ  ∧  ¬Cσ  ∧  ¬Wσ  ∧  ¬Dσ
Constraints on  δ  must be stated with each use of  t ick  .  
Leaving out the nonexistent wires, we have

s′δs

4.2  Construct:  assignment
A variable assignment program  x:= e  yields the control

s′=τ δ s  ∧  Cx=δ s  ∧  Dx=(δ s ∧ e)
¬Rσ  ∧  ¬Cρ  ∧  ¬Wσ  ∧  ¬Dρ
δ ≥ ( e  time)



τ ≥ ( s  pulse time) ≥ (memory latch time)
where  ρ  is the state of memory except for  x .

τδ s′s
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Box  e  evaluates the data expression in the assignment.  We 
assume for now that adders and other circuits to perform 
numerical operations are available;  when we have finished 
presenting high-level circuit design, we will have the means 
to design the circuits to perform integer and floating-point 
operations by writing programs that use only boolean 
variables and arrays with a restricted form of indexing.  
Adders and other arithmetic circuits may be duplicated at 
each use for maximum speed, or shared among several uses 
(by means of the function call circuitry which we present 
later), at the programmer's discretion.  The input to  e  is 
shown as the entire state of memory, but in practice it is 
just the part of memory that  e  depends on.  When the 
expression  e  is a constant, there is a further simplification.  
For example,  the assignment  x:= 5  results in the circuit

τ s′s

C

bit 0 of Dx
bit 2 of Dx

∨

>

>
>

since the binary representation of  5 , which is  ...0000101 , 
has 1s at bit positions 0 and 2. Expression  e  may 
depend on an array element;  if so, the reading address for 
that array element must be output from the expression 
circuit, conjoined with  s , and routed to memory.  There 
may be references to elements of several arrays, but for now, 
assume there is at most one array element reference per array 
in  e ;  later, the  result  expression will provide a way to 
allow an arbitrary number of array element references.  We 
are also assuming that evaluation of expression  e  takes a 
uniform, known amount of time, and the  δ  delay must 
exceed that time;  later, with the  result  expression we 
will remove that assumption.  The    outputs, as usual, 
are not really there.

An array element assignment program  A[ i]:= e  yields 
the control

s′=τ δ s
CA=δ s ∧ DA=(δ s ∧ e) ∧ WA=(δ s ∧ i)
¬Rσ ∧ ¬Cρ ∧ ¬Wρ ∧ ¬Dρ
δ ≥ ( e  time)  ∧  δ ≥ ( i  time)
τ ≥ ( s  pulse time) ≥ (memory latch time)

where  ρ  is the state of memory except for  A .
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4.3  Construct:  sequential composition
To implement sequential composition  P;Q  we suppose 
that we already have the controls  IP  and  IQ  for programs  
P   and  Q .  To avoid name clashes we systematically 
rename the inputs and outputs of  IP  by adding the subscript  
P , and similarly for  IQ .  Then the control for  P;Q  is

IP  ∧  IQ
s=sP  ∧  s′P=sQ  ∧  s′Q=s′
σP=σQ=σ
Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ)
Wσ=(WσP∨WσQ) ∧ Dσ=(DσP∨DσQ)

Diagrammatically, ignoring the connections between the 
controls and memory, we have

IP I Q
s′s

4.4  Construct:  parallel composition
To implement parallel composition  P||Q ,we need to start 
both programs (operands of  ||  are often called “processes”), 
and then merge the completion pulses.  We suppose that we 
already have the controls  IP  and  IQ  for programs  P  and  
Q .  To avoid name clashes we systematically rename the 
inputs and outputs of  IP  by adding the subscript  P , and 
similarly for  IQ .  Then the control for  P||Q  is

IP  ∧  IQ  ∧  merge
s=sP=sQ  ∧  a=s′P  ∧  b=s′Q  ∧  s′=q
σP=σQ=σ
Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ)
Wσ=(WσP∨WσQ) ∧ Dσ=(DσP∨DσQ)

Ignoring the connections between the controls and memory, 
we have

IP

I Q

s′s

This implementation of parallel composition allows  P  and  
Q  to access memory simultaneously.  For the memory we 
have described, simultaneous access to different variables or 
arrays poses no problem.  Even for the same variable, 
simultaneous reads are no problem.  But simultaneously 
reading and writing the same variable, or two simultaneous 
writes to the same variable, have unpredictable results.  We 



will soon introduce communication channels to allow 
programs to share information without memory contention.

4.5  Construct:  conditional composition
To implement conditional composition  if b then P else 
Q  we suppose that we already have the controls  IP  and  IQ  
for programs  P  and  Q .  To avoid name clashes we 
systematically rename the inputs and outputs of  I P   by 
adding the subscript  P , and similarly for  IQ .  Then the 
control for  if b then P else Q  is

IP  ∧  IQ
sP=(δ s∧b)  ∧  sQ=(δ s∧¬b)  ∧  s′=(s′P∨s′Q)
σP=σQ=σ
Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ)
Wσ=(WσP∨WσQ) ∧ Dσ=(DσP∨DσQ)
δ ≥ ( b time)

Diagrammatically, ignoring the connections between the 
controls and memory, we have

IP

IQ

s′

s

bσ

then
else

if

δ

The assumptions about  b  are the same as those about the 
expression in an assignment.  The if-then-else box is a one-
bit demultiplexer.

A one-tailed  if  b then P  is just  if b then P else  
ok .  To make a circuit for a  case  program, the  if  circuit 
is generalized in the obvious way.

4.6  Construct:  loop
To implement  while b do P  we suppose that we already 
have the control  IP  for program  P .  To avoid name 
clashes we systematically rename the inputs and outputs of  
IP  by adding the subscript  P .  Then the control for  while  
b do P  is

IP
sP=(δ (s∨s′P) ∧ b)  ∧  s′=(δ (s∨s′P) ∧ ¬b)
σP=σ ∧ Rσ=RσP ∧ Cσ=CσP
Wσ=WσP ∧ Dσ=DσP
δ ≥ ( b time)

Diagrammatically, ignoring the connections between  IP  
and memory, we have

IP

s′
s

bσ

then
else

if

δ

Again, the assumptions about expression  b  are the same as 
those about the expression in an assignment.

4.7  Construct:  local variable
To declare local variable  z  of type  T  with scope  P  we 
write  var  z: T · P .  It simply adds another word of 

memory, which is used only within  P .  Formally, its 
control is

∃z, Cz, Dz· IP
where  IP  is the control for  P .  Local declaration helps to 
locate the words of memory near the control circuitry that 
uses them.

IP

s

σ

Cσ

s′

Rσ Wσ

Dσ
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z
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↓

To declare local array  A  of size  s  and type  T  with 
scope  P  we write  var A[s]: T· P .  The size must be a 
compile-time constant.  It simply adds another RAM, which 
is used only within  P .  There is another way to implement 
array declarations that is preferable in some circumstances.  
We can treat the declaration of array  A[3]  as syntactic sugar 
for the declaration of three variables  A0 ,  A1 ,  A2 .  We 
treat the data expression  A[i]  as sugar for  case i of A0 | A1 
| A2 , and the assignment  A[i]:= e  as sugar for  case i  of 
A0:= e | A1:= e | A2:= e .  This implementation allows 
parallel access and update of array elements.

4.8  Construct:  procedure
In many programming languages, a procedure is a unit of 
program that can be named, so that it can be called from 
several places, it is a scope for local declarations, and it can 
have parameters.  These three aspects of procedures are 
separable;  we have already dealt with local scope, we will 
come to parameters in a moment, and now we consider calls 
and returns.  We suppose that we already have the control  IP  
for procedure  P .  This circuit is started from any of the 
calls, and indicates its completion to all calling points.

P IP
from callers to callerss′Ps

The calling points each become

s′P

s′s

P
s

1

2

It is a programmer's responsibility (using communications 
to be described later) to make sure that calls from parallel 
programs are mutually exclusive, so that the procedure is 
not restarted before it completes an execution.  Our 
implementation does not work for recursive calls in general, 



which are significantly harder (actually, the calls are easy but 
the returns are hard),  but it does work for tail-recursive 
calls.

A parameter declaration can be treated exactly as though 
it were introducing a local variable instead of a parameter.  
Whenever a procedure  P  with parameter  x  is supplied an 
argument  a , the resulting program  P a  can be treated as 
though it were  (x:= a ;  P) , except that   x  has been taken 
out of scope.

4.9  Construct:  function
A function, in many languages, is even more of a mixture 
than a procedure.  Its separable features are:  the ability to 
name a data expression so that it can be used in different 
places;  the ability to nest programs (statements) within a 
data expression;  local scope;  parameters.  The last two 
aspects have been dealt with, and we now consider the first 
two.

To associate a name with a data expression  e , just put 
the circuit to evaluate  e  somewhere.  Its input comes from 
memory, and its output goes to all uses of the name.

eσ to uses

Data expressions occur in various forms of program, 
such as assignment and  if .  We have been assuming that 
their evaluation time is predictable at compile-time, but to 
be general, we allow circuits for data expressions to have a 
control line ( s  input and  s′  output).  The data expression  
P result e  requires execution of program  P  in order to 
create the correct state for evaluation of  e .  Its circuit 
inserts the appropriate delay in the control line.  The delay 
may depend on the initial state, varying from one evaluation 
to another;  it is not a worst-case delay.

IP

s

σ

s′

e P result e

CσRσ Wσ

Dσ? !

δ

IP  is the control for program  P  and  δ ≥ ( e  time) .  If  P  
changes only local variables, so that there are no side-effects, 
then the outputs  Cσ, Wσ, Dσ  to memory are unnecessary.  
Expression  e  should be evaluated in the local scope, so the 
input to  e  should include local variables as necessary.  A  
result  expression is often used as the body of a function.  
Another use is to help us out of an earlier difficulty:  we 
were not allowed to have references to different elements of 
the same array within one basic data expression.  But a 
compiler can transform an expression like  A[i]+A[j]  into

(var t: int· t:= A[ i] result t+A[ j])
and so we now lift the earlier restriction.

4.10  Construct:  communication
To declare local channel  c  of type  T  with scope  P  we 
write  chan c: T· P .  For one writing program and one 
reading program it is defined as follows.

(chan c: T· P)
= (var c: T·  var √c: bool·  √c:= ;  P)
It introduces two variables, called the buffer and the probe.  
The buffer  c  (same name as the channel) holds the value 
being communicated, and the probe  √c  (pronounced “check  
c ”) tells whether there is an unread message in the buffer.  
We define output of expression  e  and input to variable  x  
on this channel as follows.

c! e   =   (while √c do tick;  c:= e;  √c:= )
c? x   =  (while ¬√c do tick;  x:= c;  √c:= )

Since we have already implemented all constructs on the 
right sides of these definitions, we therefore have 
implementations of channel declaration, input, and output.  
But there are two points that need attention.  The  tick  
delay must be longer than the control pulse (the pulse on  
s ) so the control pulse is not lost.  And the  while  must 
use an edge-triggered switch so the control pulse will not be 
truncated, split, or otherwise damaged by a change in  √c   
due to a parallel program.  Although the buffer may also be 
shared by parallel programs that both read and write it, the 
discipline of use imposed by input and output ensures 
noninterference.

5  Correctness
To prove that our circuits are correct, we must have a formal 
semantics for our source programs and circuits.  Here is the 
source semantics.

Let  t  and  t′  be the initial and final execution times, 
the times at which execution starts and ends.  If the 
execution time is infinite,  t′=∞ .  Let the state variables  x ,  
y , ... be functions of time.  The value of  x  at time  t  is  
x t .  An expression such as  x+y  is also a function of 
time;  its argument is distributed to its variable operands as 
follows:  (x+y)t = x t + y t .  Let

wait
= (t′≥t  ∧  ∀t′′: t≤t′′≤t′·  xt′′=xt ∧ yt′′=yt ∧ ...)
so that  wait  takes an arbitrary time during which the 
variables are unchanging.

The programming notations are defined as follows.
ok   =   (t′=t)
tick   =   (t′=t+δ ∧ wait)
(x:= e)   =   (t′=t+δ+τ ∧ xt′=et ∧ waity,z...)

where  δ ≥ ( e time)  ∧  τ ≥ (memory time) .
(P;Q)   =   ∃t′′· (substitute  t′′ for  t′  in  P )

∧ (substitute  t′′  for  t  in  Q )
(Pα  ||  Qβ)   = (Pα  ∧  (Q; wait)β

∨ (P; wait)α  ∧  Qβ)
(if b then P else Q) =   (if  bt then P else Q)

=   (bt ∧ P  ∨  ¬bt ∧ Q)
where  δ ≥ ( b time) .



(while b do P)
⇒ if b then (P;  while b do P) else o k

(∀x, x′, y, y′, ..., t, t′·  W  ⇒ if b then (P; W)
else ok)

⇒ (∀x, x′, y, y′, ..., t, t′·  W  ⇒   while b do P)
var z: T· P   =   ∃z: time→T· P

where  t ime→ T  is the functions from time values 
(including  ∞ ) to  T  values.

Here is a simple example, in variables  x  and  y .  In 
this example we use discrete time and take  δ  to be  0  and  
τ  to be  1 .

x:= x+3;  x:= x+4
= (t′=t+1 ∧ xt′=xt+3 ∧ yt′=yt);

(t′=t+1 ∧ xt′=xt+4 ∧ yt′=yt)
= ∃t′′· (t′′=t +1 ∧ xt′′=xt+3 ∧ yt′′=yt)

∧ (t′=t′′+1 ∧ xt′=xt′′+4 ∧ yt′=yt′′)
=     t′=t+2 ∧ x(t+1)=xt+3 ∧ x(t+2)=xt+7

∧ yt=y(t+1)=y(t+2)
In the parallel composition,  α   consists of those 

variables that appear on the left of assignments within  P , 
and  β  consists of those variables that appear on the left of 
assignments within  Q ;  α  and  β  must be disjoint.  The 
use of  wait   is just to make the faster side of the parallel 
composition wait until the slower side is finished.  To 
illustrate the semantics, here is an example in variables  x  
and  y , and discrete time with  δ=0  and  τ=1 .  In the left-
hand program, only  x  is assigned, so only  x  is treated as 
a state variable.  In the right-hand program, only  y   is 
assigned, so only  y  is treated as a state variable.

(x:= 2;  x:= x+y;  x:= x+y) || (y:= 3;  y:= x+y)
= (  t′ = t +1 ∧  xt′=2;  t′ = t+1  ∧  xt′ = xt+yt;

   t′ = t+1  ∧  xt′ = xt+yt  )
∧ (  t′ = t +1  ∧  yt′=3;  t′=t+1  ∧  yt′ = xt+yt;

   t′≥t ∧ ∀t′′: t≤t′′≤t′·  yt′′=yt  )
∨ (  t′ = t +1 ∧  xt′=2;  t′ = t+1  ∧  xt′ = xt+yt;

   t′ = t+1  ∧  xt′ = xt+yt;
   t′≥t  ∧  ∀t′′: t≤t′′≤t′· xt′′=xt  )

∧ (t′ = t +1  ∧  yt′=3;  t′=t+1  ∧  yt′ = xt+yt)
= t′ = t+3 ∧ x(t+1)=2  ∧  x(t+2) = x(t+1)+y(t+1)

∧ x(t+3) = x(t+2)+y(t+2)
∧ t′ ≥ t+2 ∧ y(t+1)=3 ∧ y(t+2) = x(t+1)+y(t+1)
∧ ∀t′′: t+2≤t′′≤t′·  yt′′=y(t+2))

∨ t′ ≥ t+3  ∧  (other conjuncts)
∧ t′ = t+2  ∧  (other conjuncts)

= t′=t+3 ∧  x(t+1)=2  ∧  y(t+1)=3  ∧  x(t+2)=5
∧ y(t+2)=5  ∧  x(t+3)=10  ∧  y(t+3)=5

The example has the appearance of lock-step parallelism, as 
though there were a global clock, only because, for the sake 
of simplicity, we used discrete time with constants  δ=0  and  
τ=1  for all assignments.

The first formula concerning the  while  loop says it 
refines its first unrolling.  Stated differently,  while b do P  
is a pre-fixed-point of  W  ⇒  if b then (P; W) else ok  .  
The second formula says that it is as weak as any pre-fixed-
point, so it is the weakest pre-fixed-point.

The other programming constructs (channel declaration, 
input, output, signal declaration, sending, receiving, 
parameter declaration, argumentation) are defined in terms of 

the ones we have already defined, so we do not need to give 
them a separate semantics.  And that completes the source 
semantics.

The imperative circuit semantics was given with each 
circuit.  For example, the control for  ok  was

s′=s  ∧  ¬Rσ  ∧  ¬Cσ  ∧  ¬Wσ  ∧  ¬Dσ
and the control for  while b do P  was

IP
sP=(δ (s∨s′P) ∧ b)  ∧  s′=(δ (s∨s′P) ∧ ¬b)
σP=σ ∧ Rσ=RσP ∧ Cσ=CσP
Wσ=WσP ∧ Dσ=DσP
δ ≥ ( b time)

where  IP  is the control for  P .
Before we can prove correctness, we need one more idea, 

adapted from [9].  Roughly speaking, a circuit is “busy” if it 
has been started and has not yet stopped.  Formally, define  
B  as

B   =   ((s ∨ δ B) ∧ ¬s′)
δ   ≤   (pulse time)

The delay here must be shorter than the pulse length used on 
the control lines ( s  and  s′ ).  If time is discrete and  δ=1 , 
then for any  A

( A) 0   =   
( A) (t+1)   =   At

and so for busy  B
B0   =   
B(t+1)   =   ((s(t+1)  ∨ Bt) ∧ ¬s′(t+1))

To prove that a circuit is correct, we must prove
IP ∧ M ∧ st ∧ (∀t′′· Bt′′∧ Bt′′ ⇒ ¬st′′)

∧ t′=(min t′′· t′′≥t· ∧ s′t′′)
⇒ P
Suppose we have the control  IP  (for program  P ), and we 
have the memory  M , and we put a pulse on the start wire  
s  at time  t , and we don't try to restart the circuit while it's 
busy, and we give the name  t′  to the first time at or after  t  
when  s′  becomes   ;  then we expect the circuit to satisfy 
the semantics of program  P .  We do not have to prove 
correct each circuit that we design;  instead, we prove that 
our circuit generation scheme is correct.  The proof is long, 
and we omit it, stating only two lemmas that are useful 
steps on the way to the proof.

I ∧ ¬ B ∧ ¬s  ⇒  ¬s′
which says that a circuit does not spontaneously generate  
s′ .

I ∧ ¬B  ⇒  ¬Rσ ∧ ¬Cσ ∧ ¬Wσ ∧ ¬Dσ
which says that if a circuit is not busy, its Rσ , Cσ , Wσ , 
and  Dσ  outputs are all   .

6  Synchronous and Asynchronous
There are two ways to control the timing in circuits.  One is 
by using delays calculated, or experimentally determined, to 
be long enough to ensure that all data values have settled 
properly.  The other way, called “delay-insensitive”, is to 
use handshaking signals that allow a data transfer to occur 
just when both sender and receiver are ready.  These 
solutions can be applied locally, or globally, or at any level 
in between.  The word “synchronous” is usually used to 



describe a global delay, or clock;  the word “asynchronous” 
is sometimes used to describe local handshaking.

The circuits resulting from the methods we have 
presented use local delays.  But as a special case, it is 
possible to write a program in the form of a single loop, 
whose body is a parallel composition of assignments.  This 
program structure forces a single, common delay for all state 
changes;  that delay is in effect a global clock.  We can thus 
program a synchronous circuit when we want one.  When 
designing a circuit, there is little point in aiming for the 
synchronous structure, and equally little point in aiming to 
avoid it.  One chooses a program structure that is 
appropriate for the task, and one gets a circuit that 
accomplishes that task.  In principle, local delays should be 
faster than a single global delay.  That is because a global 
delay must be the maximum of all the local delays.  In a 
synchronous circuit, each state change takes as long as the 
slowest state change requires.

If we choose to make each assignment into a little 
procedure, the 1-2-merges at the calling points are an 
implementation of local handshaking.  We can thus program 
local handshaking when we want it.  In principle, local 
delays should be faster than local handshaking.  That is 
because the handshaking takes time.  A local delay is just 
long enough for the data to be ready, not long enough for 
the data to be ready and to indicate its readiness.

7  Conclusion
Circuit design can be done more effectively by describing the 
function that a circuit is intended to perform than by 
describing a circuit that is intended to perform that function.  
A programming language is more convenient for that 
purpose than a gate-level language.  It seems quite obvious 
that complex circuits can be designed this way more easily 
and reliably than by low-level gate descriptions.  And the 
resulting circuits seem, from a preliminary investigation, to 
show the promise of competing successfully with hand-
crafted circuits. They should be smaller and faster than 
synchronous circuits due to the absence of a global clock.  
They should also be smaller and faster than delay-insensitive 
circuits due to the absence of handshaking.  These gains 
come at a price:  the language implementer must provide 
local delays.  We do not suppose it is easy to provide local 
delays, but this price is paid only once;  circuit designers 
who use the high-level language do not need to be concerned 
with them.

We have compiled a sampling of programming 
constructs that are representative of many high-level 
languages.  Some obviously desirable constructs, such as 
modules, are missing only because they do not present any 
circuit generation problems (modules restrict the use of 
identifiers).

We have implemented ordinary programs with logic 
gates.  The logic gates can, of course, be implemented with 
electronic transistors, resistors, and diodes.  We could 
therefore bypass the logic gates, implementing the programs 
directly with transistors, resistors, and diodes.  Doing so 

makes more optimizations and more efficient circuits 
possible.  Ultimately, perhaps logic gates will have no 
remaining role in circuit design.
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