programz2cir cuit

ERIC C.R. HEHNER

University of Toronto
CANADA

hehner@cs.utoronto.ca

THEODORE S. NORVELL
Memorial University of Newfoundland
CANADA
theo@engr.mun.ca

Abstract: -We present a new way to implement ordinary programs with logic gates. and a new method of timing wit
circuits, and a new method of circuit verification. Application-specific circuit design can be done more effectively by usir
standard programming language to describe the function that a circuit is intended to perform, rather than by describing a
that is intended to perform that function. The circuits are produced automatically; they behave according to the program
have the same structure as the programs. For timing we use local delays, rather than a global clock or local handsl
We give a formal semantics for both programs and circuits in order to prove our circuits correct.

Key-Words: digital circuit design

1 Introduction approach (and a similar circuit design language) is used ir
The usual alternative to building application-specific circuitd1] and [2], except that specifications are mapped into
is to use a general-purpose processor, and customize it for@amnnections of small components for which standard
application by writing a program. But for sometransistor implementations exist. In [14] circuits are
applications, particularly where speed of execution omodeled as networks of finite state machines, and theit
security is important, a custom-built circuit has somdormalism is used to assist in proving the correctness of
advantages over the usual processor-and-softwaneir compiled circuits. The works of [6] and [10] are most
combination. The speed is improved by the absence of themilar to ours, but their designs have a global clock; ours
“machine-language” layer of circuitry with its “fetch- do not.
execute” cycle of interpretation, and by the ease with which
we can introduce parallelism. Security is improved by the .
impossibility of reprogramming. In addition, unless the2 Time
application requires a lengthy algorithm, there are spaddeally, we might suppose that circuit components act
savings compared to a combination of software anthstantly, with no gate delays, and are represented accuratel
processor. by timeless boolean expressions. Realistically, there are
The VHDL [8] and Verilog [13] languages are presentlygate delays, and sometimes there are transient signal
being used by industry. There are interactive synthesis toolglitches) while a circuit settles into a stable state. We must
to aid in the construction of circuits from subsets of thesentroduce a timing discipline to ensure that we do not
languages. The circuits are then “verified” by simulation. require, and are not affected by, a result before it is ready
We do not present a new language for circuit designVe can consider time to be continuous or discrete; nothing
Instead, we advocate using a standard programming languagethis paper will depend on that choice.
(for example, C), not to describe circuits, but to describe To talk about time, we find it convenient to introduce
algorithms. The resulting circuits are producedhe operator< , pronounced “delay” or “previous”. It gives
automatically; they behave according to the programs, arile value that its operand had previously, a short time ago
have the same structure as the programs. For timing we ulée circuit graphic is similarly a triangle. Whenever we need
local delays, rather than a global clock (synchronous) do say formally what constraints a delay time must satisfy,
local handshaking (asynchronous). We give a formake write it to the left of the delay operator, and inside its
semantics for both programs and circuits in order to proveircuit graphic.
our circuits correct, using a theory presented in [5]. Delay time is dependent on context and technology, it is
There are other high-level circuit design techniquesisually determined by experiment, and can be known only
being developed and reported in the literature. Early worpproximately, say with an upper and lower bound.
includes [11], [12], and [4]. In [3] and [7], a circuit is Sometimes we want the delay to be as short as possible
specified in a subset of CSP as a set of communicatinghen that is the case, signal propagation time through the
processes, and is transformed into circuits via awire and surrounding gates is sufficient, and no extra
intermediate mapping to production rules. A similarcircuitry is required. When more delay is needed, it can be

implemented as an even number of negations, or by l&a pulse ona follows a pulse onb , there must be a
suitable choice of layout; these implementations are nalelay of at leasty after the end ob before the start ofa
subject to glitches, and so do not raise again the probleto avoid truncating the output pulse. No circuit can
they are solving. In addition to its logical use, the delayonstrain its inputs; its context of use must constrain its
sometimes has the electrical job of reshaping a pulse, bothputs, so a constraint is expressed formally as an antecedel
height and width, to compensate for degradation. But that iather than a conjunct. The circuit specification is therefore

a level of detail below our concern. ~(ad-y<alb)
As a formal requirement, for proof of correctness, wel [, A r=(q0-y<0)
need to define the output of a delay to be initially for the O A=(rO@0OadA))
delay time, and thereafter it is the same as the input but O g=(A0Ob)
delayed. This initial L is the only initialization in our A merge that outputs a pulse when the second of the

circuits; we don't consider initialization circuitry in this two input pulses arrives, regardless of their order, and reset:
paper. (We usel for low voltage, ground, or false, antd itself for reuse, is as follows. The inputs aaeand b and
for high voltage, power, or true.) the output isq . Internal wire A means “a is T or has
been T ”; internal wire B means ‘b is T or has been
T 7; internal wire r is T except at the falling edge af .

3 Merge The circuit is
A merge turns two sequences of pulses into a single r = (@QO-y<q)
sequence of pulses. (A pulse is a momentary. The 1- A = fO@Oa<A)

o9}
|

2-merge has input® and b and outputq . It outputs a = O(b0OBR<BY))
pulse when pulses arrive oma and b in that order, or qg=A0OBO (@aldb))
simultaneously, but not in the other order. To design a 1-2- o < (pulse time)d a <y
merge, we introduce an internal wife with the meaning “ B < (pulse time)d B<y
a is T or has beenl ”

= @Oa<A) a
= AODb) —>
0(< (pulse time) b —
Unfortunately this is a one-time-only circuit; if ever there is —
a pulse ona , it will allow all subsequent pulses o to
pass. To obtain a circuit that resets itself on the falling edge
of g ready to be used repeatedly, we introduce one more r 7
internal wire r thatis T except at the falling edge of . IS e N O I ‘
The circuit becomes |5 k =
= 0-ydg) a0 [[)—A
A = fd@0Oa<A)) S
q = (AOb) - —
a < (pulse time) 0 a <y T g)_—D
a5 17 ‘>q L B}i
by 2
4 Overview
The circuits that result from the translation have two
7<f y‘ components: a control , and a memoryM , connected as
Q follows.
aﬂ ;D >Qq S—> > d
‘ > — |
o 2 !
b o lRo Co lWo Do
Internal wires can be left exposed, as in the above b3
specification of 1-2-merge and the top diagram, or they can ’ !
be hidden as in the bottom diagram and the following M
specification:
r, A- r=@U-y<do) A thin line indicates one wire; a thick line indicates many
0 A= (0@0OadA) wires. We are depicting logic, not layout; the best place for
0 q=A0b a bit of memory may be with a part of the control that uses

it. The memory consists of a word for each global variable SN N

and a RAM for each global array in the program. (We |Q

present local variables later. By making variables as local as —>° o !

possible, we minimize the need for the global memory.) 7 Ip —

Suppose the variables are and y, and the arrays aré —> > |

and B . Then there are four clock wires, call&k , Cy, ' | L

CA, and CB, and collectively calledCo . With one clock |

wire for each variable and each array, the variables and arra NE L NE

can be independently and asynchronously changed. The daja U U

inputs are Dx , Dy, DA, and DB, collectively called & &

Do . For the arrays, the writing address wires Waé and

WB, collectively calledWo , and the reading address wires ? | !‘_

are RA and RB, collectively called Ro . The memory M

outputs arex, y, A[RA] and B[RB, collectively called

0 , the state of memory. Altogether, memory is Each disjunction is really many disjunctions, one for each

M = (x = (if ~CxOy<<Cxthen<Dx else<Ix) bit in its operands.
Oy = (f -~Cydy<Cythen<Dy else<y) It is not our intention to present a new programming
O (di-Afi] = if ~-CAOy<dCAOI=EWA language for circuit design; we advocate using a standarc

then<1DA else<1A[i]) programming language. We now describe the control for a
0 @i-B[i] =if ~-CBOy<dCBUOi=WB sampling of programming constructs from typical
then<IDB else<1B[i])) programming languages.

y = (edge time) + (negation delay)

The expression~Cx [0 <ICx says that the clock fox is 4.1 Construct: empty

down but was just previously up, so it is a falling edgeWe begin with the simplest programok (sometimes
The Cx-delay y should be just large enough to allo@x called skip). It is the “empty” program, whose execution
to fall and to allow that falling edge to be negated. Dke does nothing, taking no time. Programk vyields the
delay determines what data is latched; for example, weontrol

might want the data from before the falling edge, or atits s=s 0 -Ro O -Co O -Wo O -Do

start, or at its end (this delay could be omitted). ¥delay

should be as small as possible. Similarly for the other S s
variables and arrays. > >

The state is input to the control, along with an initiator o 1 Do
wire s. A pulse ons starts the computation. As the
computation progresses, the control changes the state of

memory, thus providing itself with further input. To
change the value of variablex in memory, the control
must send a pulse on clock wit€x and the desired new
value on wire Dx . If the computation is finite, then when
it is complete, the control indicates termination by a pUIS%ringing those wires from memory. And since tRG
on the completion wires' . It is the responsibility of the ' !

context to ensure that the control is not restarted before Jfo.’ Wo , and DG outputs areL , there is no point in
; taking them into a disjunction. So the circuit reduces to
has completed an execution.

A program is sometimes composed of Sma”epothmg, which is appropriate for a circuit that does nothing.

programs. (In other terminology, a statement is s_ometime&_z Construct: delay

composed of smaller statements; we do not dlstlngw_s{qhe next simplest program istick , which also does
between “program” and “statementf’.) When a program '%othing but takes tima to do it. ’

composed of parts, the control will be com.p.osed of the s’=2';<ls 0-Ro 0 =Co 0 -Wo O -Do

controls for the parts. To make the composition easy, WEonstraints ond must be stated with each use tifck .

require of each part that its outpitx be L at any instant Leaving out the nonexistent wires, we have
when it is not changing variable . Then we can disjoin '

the Dx Wire_s on their way to memory. Other variables and s 5 g
arrays are similar. \

Ro CoWo

We have shown all its inputs and outputs. But sincedhe
input is not connected to anything, there is no point in

4.2 Construct: assignment

A variable assignment program= e yields the control
S=1<dds O Cx=06<s [0 Dx=(d<dse)
-Ro OO0-Cp OO-Wo O -Dp
0= (e time)

T2 (s pulse timek (memory latch time) s —{6 *ﬁr _>9q

where p is the state of memory except far.
s —3 T —>5§ H j)—;DA
)Q D 9
e —]
0 0

c CA WA

Box e evaluates the data expression in the assignment. W . ..
assume for now that adders and other circuits to perforfr3 Construct: —sequential composition
numerical operations are available; when we have finishet® implement sequential compositioR;Q we suppose
presenting high-level circuit design, we will have the mean§at we already have the controls and Iq for programs

to design the circuits to perform integer and floating-poin® @nd Q . To avoid name clashes we systematically
operations by writing programs that use only booleaféhame the inputs and outputslef by adding the subscript
variables and arrays with a restricted form of indexing? » @nd similarly forlg . Then the control folP;Q is

Adders and other arithmetic circuits may be duplicated at lp O lq

each use for maximum speed, or shared among several uses SSP U SP=sQ U $Q=8

(by means of the function call circuitry which we present ~ OP=0Q=0

later), at the programmer's discretion. The inputetois Ro=(Rop[Roq) [1Co=(CoplICaq)

shown as the entire state of memory, but in practice it is. W0=(Wop[Wogq) ODo=(DoplDoq)

just the part of memory thate depends on. When the Diagrammatically, ignoring the connections between the
expressione is a constant, there is a further simplification.controls and memory, we have

For example, the assignmeri=5 results in the circuit

S——> — —>S
S——1 —>°% I I
P Q
—>bit 2 of Dx
——>bit 0 of Dx
¢ 4.4 Construct: parallel composition

..0000101T° implement parallel compositiorP||Q ,we need to start

since the binary representation of 5, whichis . both programs (operands dff are often called “processes”),

has 1s at bit positions 0 and 2. Expression e may
depend on an array element; if so, the reading address
that array element must be output from the expressio ready havg the controlép and I for programs P and
circuit, conjoined with s, and routed to memory. There . To avoid name clashes we systematlcall_y rename the
may be references to elements of several arrays, but for nonlijlt;rlar}grOIUtpUtﬁhgapthgycggggﬁgge suit;scnpp » and
assume there is at most one array element reference per ar?H{) | é | S ;”ner o IR

in e; later, theresult expression will provide a way to s=P ' 1Q 0 a—s’g 0 b=so [0 =

allow an arbitrary number of array element references. We ops—Pc_ngo —>P —Q =q

are also assuming that evaluation of expresstomakes a e _

uniform, known amount of time, and thé delay must Ro=(RopLIRoQ) L Co=(CopLiCaq)

exceed that time; later, with theesult expression we | now::%zgx]ogﬂgriogéﬁgg?gg controls and memor
will remove that assumption. Thel outputs, as usual, g 9 Y:

are not really there. we have
An array element assignment prografifi]:= e yields
the control I x
>— —> S

d then merge the completion pulses. We suppose that w

S=1<10ds S

CA=0<1s [0 DA=(ddsUe) OWA=(ds i)

-Ro0O-CpO-Wp O-Dp —>

0= (e time) O 3= (i time) IQ

T2 (s pulse timek (memory latch time)
where p is the state of memory except fér.

This implementation of parallel composition allovis and

Q to access memory simultaneously. For the memory we
have described, simultaneous access to different variables ¢
arrays poses no problem. Even for the same variable
simultaneous reads are no problem. But simultaneously
reading and writing the same variable, or two simultaneous
writes to the same variable, have unpredictable results. We

will soon introduce communication channels to allowmemory, which is used only withinP . Formally, its
programs to share information without memory contention. control is

[z, Cz Dz Ip
4.5 Construct: conditional composition where Ip is the control forP . Local declaration helps to
To implement conditional compositiorif b then P else locate the words of memory near the control circuitry that
Q we suppose that we already have the contielend 1o uses them.
for programs P and Q . To avoid name clashes we
systematically rename the inputs and outputslef by S—> > S
adding the subscripp , and similarly for 1o . Then the
contlrsléO:Qlf bthen PelseQ is o 3 | > Do

$=(3<15h) 0 so=(3<Ishb) O §=(pE0) 2 | lDZ
!

OP=0Q=0

Ro=(RopCRoo) [Co=(CoplCo0) z L -

Wo=(WoplW60) [Do=(DopDGQ) Cz

&= (b time) |
Diagrammatically, ignoring the connections between the
controls and memory, we have vV V Vv

Ro Co Wo
ot
v / [s' To declare local arrayA of size s and type T with
n—

i P scope P we write var A[s]: T-P . The size must be a
S AN the compile-time constant. It simply adds another RAM, which
W el se — is used only withinP . There is another way to implement
|Q array declarations that is preferable in some circumstances

We can treat the declaration of arré&y3] as syntactic sugar

The assumptions aboud are the same as those about thefor the declaration of three variablésd , A1, A2. We

expression in an assignment. The if-then-else box is a onéeat the data expressioNi] as sugar forcasei of AO|Al

bit demultiplexer. | A2, and the assignmenf\[i]:= e as sugar forcase i of
A one-tailed if bthen P is just if bthen Pelse AQO=e|Al= e |A2=e. This implementation allows

ok . To make a circuit for aase program, theif circuit parallel access and update of array elements.

is generalized in the obvious way.

4.8 Construct: procedure
4.6 Construct: loop In many programming languages, a procedure is a unit of
To implement while bdo P we suppose that we already program that can be named, so that it can be called from
have the controllp for program P . To avoid name several places, it is a scope for local declarations, and it car
clashes we systematically rename the inputs and outputs lofive parameters. These three aspects of procedures a
Ip by adding the subscript . Then the control forwhile — separable; we have already dealt with local scope, we will

bdoP is come to parameters in a moment, and now we consider call:
Ip and returns. We suppose that we already have the cdntrol
sp=(8<1(sIs'p) Ob) O s=(3<1(sxsp) O-h) for procedure P . This circuit is started from any of the
op=0 JRo=Rop O Co=Cap calls, and indicates its completion to all calling points.
Wo=Wop ODo=Dap . .
0= (b time) from caIIer@% | ﬁto callers
Diagrammatically, ignoring the connections betweép ¥ P

and memory, we have))
The calling points each become
—0

if ﬁ lp P %
S — then—
— > 2
%9 else— ¢ S >1_ —> g

Again, the assumptions about expressiorare the same as

those about the expression in an assignment. It is a programmer's responsibility (using communications
to be described later) to make sure that calls from parallel
4.7 Construct: local variable programs are mutually exclusive, so that the procedure is

To declare local variable of type T with scopeP we hot restarted before it completes an execution. Our
write var z: T- P . It simply adds another word of implementation does not work for recursive calls in general,

which are significantly harder (actually, the calls are easy byt.10 Construct: communication

the returns are hard), but it does work for tail-recursiv8o declare local channet of type T with scopeP we

calls. write chan c: T- P . For one writing program and one
A parameter declaration can be treated exactly as thougbading program it is defined as follows.

it were introducing a local variable instead of a parameter. (chanc: T-P)

Whenever a procedur® with parameterx is supplied an = (var c: T- var Vc: bool- vc:= 1; P)

argument a , the resulting progranP a can be treated as It introduces two variables, called the buffer and the probe.

though it were X;=a; P), except that x has been taken The buffer ¢ (same name as the channel) holds the value

out of scope. being communicated, and the prolde (pronounced “check
c ") tells whether there is an unread message in the buffer
4.9 Construct: function We define output of expressioa and input to variablex
A function, in many languages, is even more of a mixtur@n this channel as follows.
than a procedure. lts separable features are: the ability to c!'e = (hilevcdotick; c:=¢; vc=T)

name a data expression so that it can be used in different ¢c?x = (while=vcdo tick; x:=c; vei= 1)
places; the ability to nest programs (statements) within &ince we have already implemented all constructs on the
data expression; local scope; parameters. The last twight sides of these definitions, we therefore have
aspects have been dealt with, and we now consider the fiistplementations of channel declaration, input, and output.
two. But there are two points that need attention. Ttiek

To associate a name with a data expressqrjust put delay must be longer than the control pulse (the pulse or
the circuit to evaluatee somewhere. Its input comes from s) so the control pulse is not lost. And thehile must

memory, and its output goes to all uses of the name. use an edge-triggered switch so the control pulse will not be
truncated, split, or otherwise damaged by a changé&dn

o—)EFG to uses due to a parallel program. Although the buffer may also be

- shared by parallel programs that both read and write it, the

Data expressions occur in various forms of programgdiscipline of use imposed by input and output ensures

such as assignment arifl . We have been assuming that "oninterference.
their evaluation time is predictable at compile-time, but to
be general, we allow circuits for data expressions to have

g P 8 Correctness

control line (s input ands output). The data expression .
Presult e requires execution of prograr® in order to To prove that our circuits are correct, we must have a formal

create the correct state for evaluation ef. Its circuit Se€mantics for our source programs and circuits. Here is the

inserts the appropriate delay in the control line. The dela§PUrce semantics.

may depend on the initial state, varying from one evaluatio Let t and t' be the initial and final execution times,
to another; it is not a worst-case delay. the times at which execution starts and ends. If the

execution time is infinite,t'=c0 . Let the state variables,
s——> 4% s Y, ... be functions of time. The value of at time t is
X t . An expression such ag+y is also a function of

IP _<:: e —>» Presult e time; its argument is distributed to its variable operands as

5 | foIIows_: x+y)t=xt+yt. Let
: = Do wait
¢ ¢ ¢ = (2t O Ottt xt'=xt Oyt'=yt 0 ...)
Ro Co Wo so that wait takes an arbitrary time during which the
variables are unchanging.
Ip is the control for progranP and 3= (e time) . If P The programming notations are defined as follows.
changes only local variables, so that there are no side-effects, ok = ¢'=t) _
then the outputsCo, Wo, Do to memory are unnecessary. tick = ¢'=t+d Dwait) .
Expressione should be evaluated in the local scope, so the (X=€) = (=t+6+1 Oxt'=etwaity)
input to e should include local variables as necessary. Avhere 8= (etime) [J T = (memory time) .
result expression is often used as the body of a function. (P;Q) = [X"- (substitute t” for t' in P)
Another use is to help us out of an earlier difficulty: we U (substitute t” for t in Q)
were not allowed to have references to different elements of (Pa || Qp) = (Pa O (Q; walit)
the same array within one basic data expression. But a 0 (P;wait)a [Qp)
compiler can transform an expression liR]+A[j] into (if bthen P elseQ) = (f btthenP elseQ)
(var t: int- t:= A[i] result t+A[j]) . = (tUP O -btdQ)
and so we now lift the earlier restriction. where & = (b time) .

o—>

(while b do P) the ones we have already defined, so we do not need to giv

O if bthen (P; whileb do P) else ok them a separate semantics. And that completes the sourc
(Ox, X, y,y', ...,t,t'- W O if bthen (P; W) semantics.
else ok) The imperative circuit semantics was given with each
o (@x,x,y,y, .,t,t'- W O whilebdoP) circuit. For example, the control fask was
var z T-P = [z time-T-P s=s 0 -Ro 0 -Co OO-Wo O -Do
where time- T is the functions from time values and the control forwhileb do P was
(including «) to T values. Ip
Here is a simple example, in variables and y . In sp=(0<d(sisp) Ub) O s=(01(ssp) O-b)
this example we use discrete time and taketo be 0 and op=0 ORo=Rop 0 Ca=Cap
T tobe 1. Wo=Wop [0 Do=Dop
X:= X+3; X:= x+4 0= (b time)
= (t'=t+1 Oxt'=xt+3 Oyt'=yt); where Ip is the control forP .
(t'=t+1 Oxt'=xt+4 O yt'=yt) Before we can prove correctness, we need one more ide¢
= ["- (t"=t +1 Oxt'=xt+3 O yt''=yt) adapted from [9]. Roughly speaking, a circuit is “busy” if it
O (t'=t"+1 Oxt'=xt"+4 Oyt'=yt") has been started and has not yet stopped. Formally, defin
= t'=t+2 O x(t+1)=xt+3 O x(t+2)=xt+7 B as
Oyt=y(t+1)=y(t+2) B (600<1B) O=¢9)

IN ||

In the parallel composition,a consists of those o (pulse time)
variables that appear on the left of assignments within The delay here must be shorter than the pulse length used c
and [consists of those variables that appear on the left aghe control lines § and s). If time is discrete and®=1,
assignments withinQ ; a and 3 must be disjoint. The then for anyA
use of wait is just to make the faster side of the parallel (<A)0 = 1
composition wait until the slower side is finished. To (<QA) (t+1) = At
illustrate the semantics, here is an example in varialzles and so for busyB

and y, and discrete time with=0 and 1=1. In the left- BO = 1
hand program, onlyx is assigned, so onlx is treated as B(t+1) = (§(t+1) OBt) O-s(t+1))
a state variable. In the right-hand program, only is To prove that a circuit is correct, we must prove
assigned, so only is treated as a state variable. lp OM OstO (Ot Bt'O<Bt' O —st')
(X:= 2; xi= x+y; Xi=x+y) || (y:= 3; yi= x+y) O t'=(mint"-t">t- Os't")
= (t'=t+10 xt'=2; t' =t+1 O xt' = xt+yt; o P
t'=t+1 O xt' =xt+yt) Suppose we have the contrtd (for program P), and we
O(t=t+1 0O yt'=3; t'=t+1 O yt' = xt+yt; have the memoryM , and we put a pulse on the start wire
t'>t O00Ot": tst'"'<t’- yt'=yt) s attime t, and we don't try to restart the circuit while it's
O (t=t+10 xt'=2; t' =t+1 O xt' = xt+yt; busy, and we give the nanté to the first time at or aftet
t' =t+1 O xt' = xt+yt; when s becomesT ; then we expect the circuit to satisfy
t'>t O Ot": tst"'<t’- xt''=xt) the semantics of progranP . We do not have to prove
O =t+1 0O yt'=3; t'=t+1 O yt' = xt+yt) correct each circuit that we design; instead, we prove that
= t' =t+3 Ox(t+1)=2 O x(t+2) =x(t+1)+y(t+1) our circuit generation scheme is correct. The proof is long,
Ox(t+3) =x(t+2)+y(t+2) and we omit it, stating only two lemmas that are useful
Ot = t+2 Oy(t+1)=3 Oy(t+2) =x(t+1)+y(t+1) steps on the way to the proof.
OOt t+2<t”<t’- yt'=y(t+2)) | 0-<BO-s 0 =¢
0 t'=t+3 O (other conjuncts) which says that a circuit does not spontaneously generat
Ot =t+2 O (other conjuncts) s' .
= t'=t+3 0 x(t+1)=2 O y(t+1)=3 O x(t+2)=5 I 0-B 0 -Ro0-CoO0-Wo O-Da
O y(t+2)=5 O x(t+3)=10 O y(t+3)=5 which says that if a circuit is not busy, Re , Co , Wo ,

The example has the appearance of lock-step parallelism, asd Do outputs are alll .
though there were a global clock, only because, for the sake
of simplicity, we used discrete time with constadts) and
1=1 for all assignments. 6 Synchronous and Asynchronous
The first formula concerning thevhile loop says it There are two ways to control the timing in circuits. One is
refines its first unrolling. Stated differentlyyhile bdo P by using delays calculated, or experimentally determined, to

is a pre-fixed-point of W O if bthen (P; W) else ok . be long enough to ensure that all data values have settle
The second formula says that it is as weak as any pre-fixegroperly. The other way, called “delay-insensitive”, is to
point, so it is the weakest pre-fixed-point. use handshaking signals that allow a data transfer to occu

The other programming constructs (channel declaratioust when both sender and receiver are ready. Thes
input, output, signal declaration, sending, receivingsolutions can be applied locally, or globally, or at any level
parameter declaration, argumentation) are defined in terms iof between. The word “synchronous” is usually used to

describe a global delay, or clock; the word “asynchronousinakes more optimizations and more efficient circuits

is sometimes used to describe local handshaking.

possible.

Ultimately, perhaps logic gates will have no

The circuits resulting from the methods we haveaemaining role in circuit design.

presented use local delays. But as a special case, it is
possible to write a program in the form of a single loop,

whose body is a parallel composition of assignments. ThiReferences:

program structure forces a single, common delay for all stafé]
changes; that delay is in effect a global clock. We can thus
program a synchronous circuit when we want one. When
designing a circuit, there is little point in aiming for the
synchronous structure, and equally little point in aiming to
avoid it. One chooses a program structure that ig]
appropriate for the task, and one gets a circuit that
accomplishes that task. In principle, local delays should be
faster than a single global delay. That is because a global
delay must be the maximum of all the local delays. In a
synchronous circuit, each state change takes as long as the
slowest state change requires.

If we choose to make each assignment into a littlg4]
procedure, the 1-2-merges at the calling points are an
implementation of local handshaking. We can thus prograifb]
local handshaking when we want it. In principle, local
delays should be faster than local handshaking. That is
because the handshaking takes time. A local delay is jufg]
long enough for the data to be ready, not long enough for
the data to be ready and to indicate its readiness.

. (7]
7 Conclusion
Circuit design can be done more effectively by describing the
function that a circuit is intended to perform than by
describing a circuit that is intended to perform that function.
A programming language is more convenient for thafg]
purpose than a gate-level language. It seems quite obvious
that complex circuits can be designed this way more easi[9]
and reliably than by low-level gate descriptions. And the
resulting circuits seem, from a preliminary investigation, to

show the promise of competing successfully with hand{10]1.Page, W.Luk:

crafted circuits. They should be smaller and faster than
synchronous circuits due to the absence of a global clock.
They should also be smaller and faster than delay-insensitive

C.H.vanBerkel, J.Kessels, M.Roncken, R.W.J.J.Saeijs,
F.Schalij: “The VLSI programming language Tangram
and its translation into handshake circuits”. In
Proceedings of the European Design Automation
Conference1991.

C.H.vanBerkel:Handshake circuits — an asynchronous
architecture for VLSI programmingCambridge
University Press, 1993.

S.M.Burns, A.J.Martin: “Performance analysis and
optimization of asynchronous circuits”. InProc. of

the 1991 UC Santa Cruz Conf. on VLMIT Press,
1991.

C.DelgadoKloosSemantics of Digital CircuitdNCS
285, Springer, 1987.

E.C.R.Hehner: “Abstractions of Time”. & Classical
Mind: Essays in Honour of C.A.R.HoareA.W.
Roscoe (ed.), Prentice-Hall, 1994.

W.Luk, D.Ferguson, |.Page: “Structured Hardware
Compilation of Parallel Programs”. IMore Field-
Programmable Gate Arraysw.Moore and W.Luk
(eds.), Abingdon EE&CS Books, 1994.

A.J.Martin: “Programming in VLSI: from
communicating processes to delay-insensitive circuits”.
In Developments in Concurrency and Communication
C.A.R.Hoare (ed.), Addison-Wesley, University of
Texas at Austin Year of Programming Series, 1990.
S.Mazor, P.Langstraata Guide to VHDL, Kluwer,
1992,

T.S.Norvell: a Predicative Theory of Machine
Languages and its Application to Compiler Correctness
PhD thesis, University of Toronto, 1994.

“Compiling occam into field-
programmable gate arrays”. field-Programmable Gate
Arrays, W.Moore and W.Luk (eds.), p.271-283,
Abingdon EE&CS Books, 1991.

circuits due to the absence of handshaking. These gaifid] M.Rem: Partially Ordered Computations with

come at a price: the language implementer must provide
local delays. We do not suppose it is easy to provide local

Applications to VLS| DesignTechnical Report
MR83/3, Eindhoven University of Technology, 1982

delays, but this price is paid only once; circuit designerfl?]J.L.A.van de Snepscheuffrace Theory and VLSI

who use the high-level language do not need to be concerned
with them.
We have compiled a sampling of programming

[13] D.E.Thomas,

Design LNCS 200, Springer, 1985.
P.Moorby:the Verilog Hardware
Description Language<luwer, 1991.

constructs that are representative of many high-lev§l4] S.Weber, B.Bloom, G.Brown: “Compiling Joy into

languages. Some obviously desirable constructs, such as
modules, are missing only because they do not present any
circuit generation problems (modules restrict the use of
identifiers).

We have implemented ordinary programs with logic
gates. The logic gates can, of course, be implemented with
electronic transistors, resistors, and diodes. We could
therefore bypass the logic gates, implementing the programs
directly with transistors, resistors, and diodes. Doing so

Silicon”. In Advanced Research in VLSI and Parallel
SystemsT. Knight and J. Savage (eds.), MIT Press,
1992.

