do considered od:

A Contribution to
the Programming Calculus

by
Eric C.R. Hehner

Computer Systems Research Group
University of Toronto

Technical Report CSRG-75
November 1976

Abstract - The utility of the repetitive DO construct is challenged.
Recursive refinement is claimed to be semantically as simple, and
superior for programming ease and clarity. Some programming examples

> are offered to support this claim. The relation between the semantics
of predicate transformers and the mathematical semantics of Scott and
Strachey is presented.

The Computer Systems Research Group (CSRG) is an interdisciplinary
group formed to conduct research and development relevant to computer
systems and their applications. It is jointly administered by the
Department of Electrical Engineering and the Department of Computer
Science of the University of Toronto, and is supported in part by the
National Research Council of Canada.

Introduction

A major advance toward a useable programming calculus has been made by
Dijkstra [1,2]. His syntactic tool is "guarded command sets', from which he
constructs an alternative, or IF, statement, and a repetitive, or DO, state-
ment. His semantic tool is "predicate transformers', which specify, for a
given statement S and post-condition R, the weakest pre-condition
guaranteeing that S will establish R. 1In this paper, we shall assume that

the reader is familiar with the above.

Our purpose is to offer some constructive criticisms of Dijkstra's
approach. In particular, we challenge the utility of the repetitive DO
statement, and offer, in its place, the notion of recursive refinement.
Before the reader flees in panic from the "sledgehammer' tactics of repLacing
something as simple as repetition by something as complicated as recursionm,
let us make our motivation plain. The semantics of DO involve a recurrence
relation on the semantics of IF; that is by far the most complicated part of
Dijkstra's rudimentary language. Our purpose is to avoid complication as
much as possible. By contrast, we shall claim that recursive refinement
introduces less semantic complication to the language. Even more important,
we shall claim that programs composed using recursive refinement are simpler
" and clearer than programs composed of DO statements. To support this claim,
we shall present some of the programming examples of [l1]. It is intended
that our programs be compared with those in [1]. For the reader's con-
venience, we include the latter in an appendix, but we suggest that the
reader refer instead to [l1], which contains a charming and illuminating

commentary.

The Language

For our programming language, we mainly adopt Dijkstra's notations.
The empty statement will be denoted by "skip". An assignment will be
denoted by "z:=E" where x is any identifier, and F 1is any expression.
Composition (sequencing) of statements S; and S, 1is denoted by "S;;S,".
The alternative, or IF, statement is denoted by

1f BSpyBysLol .. I8 +st £1

where the Bi are boolean expressions, and the SZi are statement lists.
Like Dijkstra, we shall not make use of the "abort" statement. Unlike

Dijkstra, we shall not make use of the repetitive, or DO statement.

The programming technique known as "stepwise refinement", championed by
Dijkstra {3] and others [4], has been used to géeat advantage in [1]. It
involves the invention of a name for a portion of a program, using the name
in place of the program portion, and specifying the text of the program
portion elsewhere (possibly re-using the technique within the text of the
program portion). We shall refer to the use of a name in place of some
statements as a "call", and we shall refer to the specification of the
statements as a ''refinement'. Thus, in Dijkstra's notation, a program may
consist of the two calls

"action A"; "action B"
together with the refinements
"action A": (statement list)
and
"actioan": {statement list)
Refinemenf is commonly considered to be an extra-language programming technique,
as in [1]; the programmer is then required to assemble the various pieces of

his program into their proper places to form the final product. We shall add

the call and refinement statements to Dijkstra's little language; we thus

' save the programmer from what, in many cases, is a purely clerical task,
and we allow the final program to retain the intermediate design decisions.
This is our only addition to the language. Since we have made it, allowing

recursive calls does not make the language larger; on the contrary,

(Al

disallowing them would require a special rule.

Note. Although we have used the word 'call", we urge the reader not
to condemn our addition to the languaée because of some inefficient
implementation of procedure calls in some other language. We do not
intend to imply anything about the implementation, in particular,
‘whether a refinement is compiled "out-of-line" with branching to and
from it, or "in-line" in place of the call. We especially do not
intend to imply stacking activity. We shall discuss implementation

later. (End of note.)

Gy

Semantics

The meaning of the statements in our language may be given in either of
two ways. One is called "operational semantics'; in this view, a statement
is a command to change state (the state is a list of variables together with
their values) from a given initial state to one of the desired final states.
(As Dijkstra points out, the word "command" would have been preferable to
"statement".) The operational semantics of a statement are instructions on
how to execute the statement (perform the change in state). The other way of
giving the meaning of a statement is called "mathematical semantics”; in this
view, a statement describes a change in state (it is not a command to do
anything). The description is less detailed than a complete mapping between
initial and final states, for that would be equivalent to a set of instructions
for changing the state. Instead, it is a mapping between sets of initial
states and sets of final states. A set of states is characterized by a
predicate on the program variables, thus the mathematical semantics of a

statement are given as a predicate transformer.

Operational semantics are necessary for ﬁhe implementation, or execution,
of programs. But for programming, or understanding programs, they are too
detailed. Since our interest in this paper is mainly programming, we shall
shun operational semantics, and embrace mathematical semantics. In this
respect, we follow Dijkstra [1] and many others [6,7,8]. Perhaps partly as a
concession to our history of trying to understand programs by tracing their
executions, Dijkstra gives both the operational and mathematical semantics of
the statemgnts he introduces. Unfortunately, the terminology of the text
comes largely from>the operational view, such as ''control goes through the

loop' [1, p.66], and "repetitive comstruct" or "repetition" [1, throughout].

Recognizing that programming is a goal-directed activity, Dijkstra giﬁes
the semantics of a statement S by a predicate transformer wp that tells us,
for any post-condition R, the weakest pre-condition such that S establishes
R. This is denoted by "wp(S, R)". The semantics of our chosen statements are
defined as satisfying the following equations.

wp("skip'", R) = R
wp ("x:=E", R) '"Rx:=E
wp("S513S2", R) = wp(S;, wp(S2, R))
wp(IF, R) = (5 i:B.) and 4 1:B, ® wp(SL, R))
In the above, "Rx:sE" denotes the predicate obtained from R by simultaneously

changing all occurrences of "z" into "E". The existential and universal

quantifiers take 7 over the integers in the range 1Isisn.

The call and refinement statements give us no new semantic equations. A
call is given meaning by the details of its refinement. The act of naming
some statements, and using the name in their place, is not semantically
significant. This remains true even if some of the calls are recursive. In
this case, however, the equations become recursive, raising the possibility
that they may have more than one solution. To specify a particular solution,
we define wp(S, R) as the strongest predicate satisfying the equations.
Solving the equations may be difficult, with or without recursion; sometimes
the solution may be expressed in a 'closed form", and sometimes not (see the
section titled "Solving the Semantic Equations"). Fortunately, as Dijkstra
points out [1, p.17], we are not very interested in solving the equations.
for programming, a predicate that is stronger than wp (and hence not a

solution) will content us.

Problem Solving Methods

We now present three problem solving methods. The first may be called
"divide and conquer". We want to establish R. If we cannot see how to
do so directly, but we see that the conjunction of predicates P and ¢
implies K, then the refinement
"establish R'":

"establish P"; .

"maintain P, establish Q"
will do the job. In the second call, predicate P is called an invariant.

Clearly we can generalize to several subgoals.

The second problem solving method is '"case analysis'. Suppose we can
find n predicates, B), By, ¢+, Bn’ such that at least one must be true,

and for each %, given Bi we can establish K. Our refinement is then

"establish R":
if By - "given B;, establish R"
|| B, > "given B,, establish R"
H Bn + "given Bn’ establish R"
fi

In each alternative we are, of course, free to establish subgoals and do

further case analyses.

Suppose that, even with these methods, we do not see how to refine
"givgn Bi,establish R" for some alternative. Then the third problem solving
method may help. It is to delegate the task to a refinement after making
some measurable progress toward the goal. ''Measurable progress" is defined,

as in [1], as a decrease in a monotonically decreasing integer-valued

function that is bounded below (or equivalently, an increase in a monotonically
increasing integer—valued function that is bounded above). After that, the
task may be delegated either to a new refinement, or to the current refine-
ment. For example, if ¢ 1is the aforementioned function, the refinement may be
"establish R":
if ...
HBE + "decrease t'"; "establisih R"
Q...
fi
Having seen the method, we are now tempted to not bother with '"decrease t'",
and to simply delegate the whole alternmative to "establish R'". The futiiity
of this attempt can be seen from the equation for wp("establish R", R): the
strongest solution implies non Bi' Thus the shp?tcut "works" only in alterna-
tives that are unnecessary anyway! . (For proof, and for an illustration that
measurable progress is sufficient for recursion, see the section titled
"Solving the Semantic Equations'.) After making measurable progress, one need

not even be aware of using recursion; this is fortunate, since an indirect

recursion may escape notice.

The three programming techniques we have presented are not the only
valuable problem solving methods, nor are they sufficient for all occasions.

But they are sufficient to begin our programming examples.

Example 1
(Euclid's algorithm) [1, ch.7] Given two positive integers X and Y,

print their greatest common divisor. Our program is as follows.
xi=X; y:1=Y;
"print GCD(x,y)"
with the refinement
"print GCD(x,y)":
if 2=y -+ print(x)
0 x>y + ximgz-y; "print GCD(x,y)"
Ux<y + yi=y-x; "print GCD(x,y)"
fi
Here we have used all three problem solving methods. In the case analysis,
the method of achieving the result in each alternative is independent of the

methods used in the other alternatives. In the first alternative, we achieved

our result directly; in the other two, we made measurable progress, then recursed.

As programmers, we may comforfably use a result that has been proved with-
out being constantly aware of the.proof's details. But for those who want to
prove for each program separately that measurable progress is sufficient for
recursion, we have some words of warning. The proof is, of course, an induction
on the measure of progress. It is often easy to see that a recursive construct
works for n=0, and that if it works for n=k-1, it will work for n=k. The
common mistake is asking (or explaining) how it works for n=k-1 . This
mistake is made for one of two reasons: (a) failure to assume the inductive
hypothesis; induction requires that we prove an implication, not the hypothesis
of the implication. (b) curiosity about the implementation; an explanation of
the implementation should come only after the semantics are understood, not as

an explanation of the semantics. For either reason, this mistake leads to an

10

effort to understand by tracing, and to the poor man's induction: "If it

works for n=1, 2, and 3, then that's good enough for me.".

To make our presentation of Euclid's algorithm more formal, we shall omit
the printing; the problem is to establish
R: x=GCD(X,Y)
Our invariant is
P: x>0 and y>0 and GCD(x?y) = GCD(X,Y)
Our integer-valued monotonically decreasing function is
t: xty
The invariant P implies that ¢t 1is bounded below. We shall write predicates
whose truth has been established as comments enclosed in braces.
x:=X; y:=Y; {P}

"maintain P, establish x=y" {R}

"maintain P, establish x=y":
if x=y - skip {P is maintained, x=y is established}
ﬂ x>y + x:=x-y; {P is maintained, ¢ is decreased}
"maintain P, establish z=y" {P is maintained,
x=y is established}
u x>y -+ xi=my-r; {P is maintained, t is decreased}
"maintain P, establish x=y" {P is maintained,
x=y is established}
fi
2 4 Following a DO construct, one is entitled to conclude that all guards
are false. To put it more positively, one is entitled to conclude that the
"missing guard" is true. The IF is more straightforward: the conclusion 1is
‘established explicitly by each alternative. But then, the fact that IF has

simpler semantics than DO was never in question; our point is that the re-

cursive aspect is irrelevant to the predicate transformations.

11

Example 2
[1, p.57, Ex.3] Given integers a=0 and d>0 establish

R: Osr<d and d|(a-7)
using only addition and subtraction. We obtain an invariant by weakening
R to the more easily established
P: 0sr and d|(a-r)
Our program is
r:=a; {P}
"maintain P, establish r<d" {R}
At this point, using DO, one would require an inspiration as expressed by the
phrase "it is hard to see how X can berestablished without a loop" [1 p.53].
We are unable to eliminate the need for inspiration, but, in the spirit of the
programming calculus, we would like to minimise the need for it. With our
method, one needs the inspiration at this point to use case analysis
"maintain P, establish r<d":
if r<d + skip
0 rad + ...
£
but one need not realise until the second alternative that recursion will be
needed. Thus we have broken the required inspiration into two pieces. Choos-
ing r as our measure of progress, the second alternative becomes

"maintain P, decrease r"; "maintain P, establish r<d"

On the other hand, our method requires that the program portion on which
we recurse be named, whereas, if we use DO, there is no such necessity. We
ihtroducéd the refinement as a freedom, to be used for better programming;
but now that it is seen to be a necessity, it may seem to be an unfortunate
burden. Perhaps so;our rebuttal is that the names add understandability. The

issue is debatable.

12

The easiest refinement of "maintain P, decrease r" is simply 'r:=r-d".
However, following Dijkstra, we can speed up our program by introducing
variable dd, and maintaining it as a'multiple of d. Thus we can decrease r
by multiples of d at a time.

"maintain P, decrease r':
dd:=d; {P and d|dd}

"maintain P and d|dd, decrease r"

"maintain P and d|dd, decrease r":
if r<dd - skip
0 radd + ri:=r-dd; dd:=dd+dd;
"maintain P and d|dd, decrease r"
fi

We thus obtain a program that is computationally equivalent to Dijkstra'g,

But now, and in the examples to follow, we would like to show that our methods

can do better than merely duplicate what is attainable with DO.

The major deficiency in the last refinement above is that it does not
ﬁlearly achieve its purpose. It is obliged to decrease r; to see that it
does so, we must éee that the call occurs in a context such that r=d
and d=dd. Hence the alternative guarded by rxdd will be selected. The
ninor deficiency is that, since we know r 2dd, a test is made unnecessarily.
In "loop" terminology, the DO comstruct is a generalization of the
"while...do..."; the test is at the beginning. What is needed is a

"repeat...until..."; using DO we are obliged either to duplicate some code

or to make an unnecessary test. Instead of mechanically translating

; Dijkstra's program, we should have written

13

"maintain P and d|dd, decrease r":
ri=r-dd; dd:=dd+dd;
if r<dd + skip (
0 r2dd -+ "maintain P and d]dd, decrease r"

fi

It is now clear, without examining any external context, that the refinement

does decrease r.

14

Example 3
[1, p.65, Ex.6] Given integers X2I and Y20 establish

R: z-XY
without using exponentiation. As before, we obtain an invariant by weaken-
ing R to something that is more easily established.
: P: zacd=X" and y20
The program is then
) x:=X; y:=Y; z:=1; {P}
"maintain P, establish y=0" {R}
with the refinement
"maintain P, establish y=0":
if y=0 » skip
H y>0 -+ "maintain P, decrease y";
"maintain P, establish y=0"

fi

Note 1. The condition y20 was omitted in the invariant in [1], but is

required so that a decrease in y will be measurable progress. (End of

note 1.)

Note 2. Following Dijkstra's advice, that "all other things being equal,
we should choose our guards as weak as possible" [1, p.57], I had
originally written the second guard above as 'y#'". In Dijkstra's
program, using DO, the guard is 'y#¥0". One reason is robustness. Suppose
that, due to either machine malfunction or incorrect programming, the
portion of the program that is intended to "maintain P, decrease y'" should
fail to maintain P by decreasing ¥ below 0. The guard "¥>0" would lead to
termination of the DO loop, giving no alarm, whereas the guard "Y#0" would

lead to non-termination. The latter is a kind of alarm, and therefore prefer-

able. In our program, using recursive refinement, the guard "0 yould also

15

lead to non-termination, should ¥y be erroneously decreased below 0. But
the invariant P tells us that we need consider —-and therefore should
consider—-- only the cases ''y=0" and "y>0". Then the case ''y<0" will
lead to immediate abortion, which is a better alarm. The moral is, all
other things being equal, we should choose our guards as strong as

possible. (End of note 2.)

The remaining refinement is easy, if only a correct solution is wanted.
For efficiency, the following refinement contains two separate improvements.
"maintain P, decrease y'':
if 2|y > y:=y/2; xi= xhaz;
"maintain P, decrease y"

[non 2|y » yi= y=1; z:=a*x

fi
The first improvement is to divide the task into two cases, one of which gives
a possibly large decrease in y. The second is to realize that, if

y>0 and 2|y, then after division by 2 we sﬁill have y>0 and hence we may

decrease Yy further.

16

Example 4

[1, p.67, Ex. 7] Given an integer 720 and a function f(Z) defined
on the domain O0si<n, establish

R: allstx=(V t1:0st<n:f(7)=6)

Our first problem solving method, '"divide and conquer", suggests that we
look for predicates P and € such that P and @ = R. 1In the previous
examples, we have found the invariant P by weakening R; what was left
became §. We now take the opposite approach: we shall weaken R to obtain

@; what is left will be P.
Q: allsiz=(V i:jsi<n:f(i)=6)
P: 0sjsn and (V 1:0si<j:f(i)=6)
Fortunately, P is easily established. Our program, with refinement, follows.
J:=0; {P}

"maintain P, establish Q"

"maintain P, establish Q":
if j=n > allsix:= true
[] Jj<n > if f(J) # 6 + allsixi=false
Uffj) = § > ji=j+1; "maintain P, establish Q"

£1

17

Exits

Appareﬁtly, the problem in Example 3 has been cited as supporting the need
‘for intermediate exits from loops. One of Dijkstra's purposes in presenting
his solution is to remove this support. But one example is not proof; those
who would support the need for exits may prefer Example 4, or some other.
The argument against exits, in short; is clarity: following a DO that contains
an exit one can not be sure that all guards are false. The argument in favour
of exits is efficiency: arranging that all guards become false for termination
may require the introduction of a boolean variable, an assignment, and many
tests that would be unnecessary using an exit [9]. We shall not take a side
in the argument; we are objecting to loops with or without exits. But we shall

show the relationship between recursive refinement and exits.

The general DO comstruct may be modelled as follows.
"DO": _ji Bl > SLI; "Do"
ﬂ B, + SL,; "pDO"

0..

. Al
] B, + SL; "DO

" else + skip

£fi
where elee = non (J i:Bi). (The proof that the above is equivalent to the DO
construct is presented later.) This model gives us a way of translating
programs with DO constructs into programs using recursive refinement. But the
programs so constructed are not necessarily ones to be proud of; given the
different facility, we may construct our programs differently. Notice that
if we omit the recursive "DO" from some alternative, we have, in loop

terminology, an intermediate exit. Programs using loops and exits have the

curious property that when there is more to be done, one says nothing, but

18

when there is no more to be done, one says something: exit. The recursive
version is more straightforward; when there is more to be done, one specifies
it, and when there is not, one says nothing. Unlike the DO construct, our:

o decision in one alternative is independent of our decision in the others; we
spgcify further (possibly recursive) action precisely in those alternatives

where further action is needed.

Deep exits have been proposed as a means of exiting several nested loops
at once. The arguments for and against are the same as for intermediate
exits: efficiency versus clarity. Once again, we claim to provide both. A

common example is a search for a given value in a multi-dimensional array.

Given integers n=0 and m20, and an array or function a(i,d)
defined on the domain 0si<n and 0Osj<m, and a value x, establish the
following.

RO: Osixsn
R1: ix<n= a(iz,jz)=x
R2: izen = pon(5 i:0si<n:d j:05jm:a(i,i)=x)
In words: ix and Jjx are to indicate a position of value x in the array

if it is present; setting ix to n will indicate that it is not.

Our solution uses two invariants.
P1: 0sizsn and non(d i:0si<iz:Zi0sjm:a(i,i)=x)
asserts that the value x does not occur prior to row iz. And
P2: Osjzsm and non(S j:0sj<jz:a(iz,f)=x)
asserts that in row iz, the value x does not occur prior to colummn Jz.

Our program follows.

19

ix:=03 {P1}

"maintain P1, establish Ri or iz=n" {RO and Rl and R2}

“maintain P1, establish Rl or iz=n':
1f iz=n » skip
H tx<n +> jxr:=0; { P2}
"maintain Pl and P2, establish R1 or ix=n"

fi

"maintain P1 and P2, establish RI or ixz=n":
if jr=m > iz:=iz+l;{P2 may be destroyed}
"maintain PI1, establish RI1 or ix=n" {= P2}
n Jx<m + if a(izx,jx)=x > skip
ﬂ a(iz,jx)dz + jrimjetl;
"maintain Pl and P2, establish R1 or iz=n"

fi
fi -

The reader is invited to write a solution using DO constructs, stating
all invariants and subgoals as above, and compare it with the above. Without
an exit, the solution will probably involve a boolean variable, say "found",
that is tested many times. Perhaps the problem as stated is unfair; it may
be more reasonable to represent the presence of value z by a boolean variable
than by the expression “ix<n"; If so, the two "skip" statements in our

solution must be replaced by "found:=false" and '"found:=true" respectively,

"but no extra testing is required.

20

Implementation

In general, a call may be implemented as "“"gtack a return address, then
branch to the start of a refinement”. The refinement must end with a
return: "unstack a return address, then branch to it". It is sometimes
thought that stacking is unnecessary if recursion is prohibited. The usual
FORTRAN implementation, for example, associates with each subroutine one
location for storing a return address. But these locations are filled and
consulted in "last in, first out" order. They therefore form a stack,
although its elements are dispersed; there is no advantage in dispersing fhe
stack. Lack of recursion tells us that the number of subroutines (or
refinements) is an upper bound on the size of the return address stack;
often the program structure determines a much smaller upper bound. Butkthe
general need for a stack comes with the call and refinement, independent

of whether there are recursive calls.

There are (at least) two situations in which stacking activity is
unnecessary. They are the "last action call”™ and the "only call". A
statement is a ''last action" of a refinement if (a) it is the last state-
ment of the refinement, or (b) it is the last statement of an‘alternative
in a last action IF statement. A last action call may be implemented simply

as a branch. This is independent of whether the call is recursive [10].

A call for a refinement is an "only call" if all other calls for that
refinement are last action. Assuming that last action calls have been
implemented as branches, we may implement an only call as a branch, and the

return from the refinement &8 a branch. Or, the code for the refinement

21 -

can simply replace the only call. The latter is known as "opening'; it may
be done even if the replaced call is not am only call, by duplicating the
code for the refinement (if one so wishes). Once again, this is independent’
of whether the replaced call is recursive; when it is, this is known as

"unrolling".

In summary, we make two points. The first is that recursion is
irrelevant to the implementation of call and refinement; it adds no compli-
cation. The second is that our programs, implemented as described above,
are as efficient as those using DO, and sometimes more efficient (see the
section titled "Exits"). In particular, none of the examples presented

involves any stacking.

22

Solving the Semantic Equations

Given a statement or statement list S5, we consider that we understand S5
when we know, for all R, wp(S, R). We call this predicate transformer
the semantics of S. It may be found as a solution to the semantic equation
for S, as given in the section titled "Semantics". If S 1is not recursive,
- the equation will have a unique solution that may be found, assuming we know
the semantics of its components, by an appropriate sequence of substitutions,
k compositions, and applications of basic formulae. If S 1is recursive, its
semantic equation may have more than one solution. In that case, wp(S, R) is
defined as the strongest solution, i.e., that solution A4 such that, if B
is any solution, then A=B. The existence of a strongest solution follows
from the existence of a solution, together with the monotonicity property:
if @oR then wp(S, Q)=wp(S, R); in words, wp preserves implication. The
existence of a solution i#s proved constructively; in fact, the construction

gives us the strongest solution. This section concerns that construction.

For now, we confine our attention to direct recursion. With this re-
striction, a semantic equation has the forﬁ wp=f(wp). The strohgest
solution may be.found as the limit of the approximating sequence
WPOs WP1s WP2s oo hefined as follows:

wpo = F

wp, = f(wp;_ ;)
where "F" 1s the predicate that is everywhere false; we shall use "T"
for the predicate that is everywhere true. The sequence is monotonically

vgakening (or, more precisely, non-strengthening); this fact follows once

again from the monotonicity property. It is bounded by 7. Hence a limit

23

exists. The limit is unique; this fact is the continuity property, proved .
in {1, ch. 9]. The limit may be expressed as
wp = (T i:wp;)
Note. The approach we are taking is exactly the "least fixed point"
approach to formal semantics taken by Scott and Strachey (8. For
the set of all predicates over the program variables forms a continuous
 lattice whose partial ordering is implication. The limit of our
approximating sequence is a "least upper bound" 1if we ident:j.fy "bottom"
with "F" and "top" with "TI". Each wp i that approximates wp is
the exact semantics of a statement Si that approximates S. If S
is defined (recursively) as "S: R (S)", then the 5; are as
follows:
'SO: abort

S.: @(Si_z)
(End of note.)

Let Tus look at some examples.. Our first one is inspired by ‘Dijkstra's
example [1, p. 76] to illustrate that, for correct execution, if two guards
are true, thén either may be I'selecr.ed regardless of the past history of the
computation.

"increment x 4by an arbitrary amount':
if true + z:=x+l; "increment x by an arbitrary amount"
D true + skip
fi
wp("increment...". R) = wp("x:=x+1", wp("increment...", R)) and R
wpg = F |
wp) = wp("z:=x+1", F) and R

= F

«

24

We have immediate convergence: wp('increment...", R)=F. This tells us that
no initial state will guarantee any final state, i.e., not even termination is

.guaranteed.

Our second example proves the statement of the section titled "Problem
Solving Methods" that omitting the measurable progress is futile.
"establish R": if BI+ S
n B2 > "establish R"
o ,
wp(festablish K", R)
= (B1 or B2) and (BI = wp(S5, R)) and (B2 = wp("establish R", R))
wpo = F
(BI or B2) and (BI = wp(S, R)) and (B2 = F)

wP)

Bl and non B2 and wp(S, R)

(B1 or B2) and (Bl = wp(S, R)) and

3

(B2 = (BI1 and non B2 and wp(S, R)))

Bl and non B2 and wp(S, R)

We have converged to the solution wp("establish R", R) = Bl and non B2 and

‘ wp(S, R), which implies that the second alternative must be unnecessary.

The other alternative may be generalized to any number of alternatives without

changing this conclusion.

The next example illustrates that measurable progress toward the goal is
gsufficient for a recursive alternative.
"maintain t20, establish R":
if R + skip
D’EQB_R and t>0 > timt-1;

"maintain t20, establish R"

25

wp("...", R) = (R or (non R and t>0)) and
(R = wp("skip", R)) and
((nom R and £>0) = wp("t:=t-1", wp("...", R)))
= (R or t>0) and (non R = wp("t:=t-1", wp("...", R)))
By finding the first few approximations, we are led to the formula
wp. = (4 j:0sj<i:t>j and R

i timt=g)

This formula may be proved by induction. Thus

)

The refinement will therefore establish R if R can be established by

(1] 1] = S e 3o y .
wp("...", R) = (JJ:0s7:t>] and Ry, .
reducing ?¢. The proof that measurable progress is sufficient in general
will not be given here; it is equivalent to Dijkstra's proof that the
execution of a DO construct will terminate if it makes measurable progress

on each repeated execution.

The next example is the model of the DO comstruct given in the section
titled "Exits".
"pDo": if By + SL;; "DO"
0 5, » s1,; "pom
0...
I B, 5L ; "DO"
[ezse 8kip
LOfd ‘
where eZse-g_gBG 1:Bt). In this example, the range of’allb quantified

variables is understood to be the integers from I to 7, unless specified

otherwise.

26

wp("DO", R) = ((S'i:Bi) or else¢) and
(Vi:Bi = wp(SLi, wp("DO", R))) and
(else = wp("skip", R))
= (Vi: B, = wp(SL,, wp("DO", R))) and (else = R)

wpo = F

wpy = (Vi:B; = wp(SL;, wpy_;)) and (else = R)

wp = (5 k:k20:wpy) |
In defining the semantics of the repetitive Db construct, Dijkstra defines
an infinite sequence of predicates H(R), H,(R), Hy(R),..., as follows:

Hp(R) = else and R

H(R) = (G 4:B;) and (Vi:B, = wp(SL;, Hy_,(R)) or Ho(R)
He then defines |

wp(DO, R) = (J k:k20:H, (R))
A‘little boolean algebra reveals that H(R)=wp; and that the recurrence
relation for Hk(R) is identical to the one for WPpe The two sequences
are therefore identical, except for a shift in subscripts. Since wp=F, we
could redefine wp-Ca k:k>0:wpk); thus we have proved that our model is:
semantically equivalent to the repetitive DO. The advantage of basing our
approximating sequence on wpy=F is that this base, and the recurrence
relation wpkrf(wpkél), are applicable to all constructs, whereas the X (R)
are specific to DO. The a&vantage of basing Hp(R) as Dijkstra bases it is
that, thinking operationally, the subscript corresponds to the number of times

\

that control passes through the loop.

27

As Dijkstra has pointed out [1, p.17], for programming we are not
interested in the complete semantics of a construct S5; that is, we do
not care about wp(S, R) for all FR. We want S to establish a particular
predicate P. In general, to find wp(S, P) we find wp(S, R) for all R
and then substitute P for R. But in special cases, we can solve directly
for wp(S, P). Whenever‘the recursions are last action calls, wp(S,) 1is
applied to the same predicate throughout the equation; in that case, we can
form an approximating sequence in terms of the particular predicate P. 1In
the following example, although the recursion is not a last action, the
equation can be manipulated into the required form.
"establish r=n!": |
1f n=0+ri=1
” n>0-ni=n-1;
"establish r=ni';
ni=n+l;
| r:-r*n'

fi-

(This program is not recommended for its efficiency; it serves only as an
example for solving its semantic equation.) As the choice of refinement

name states, we want to use this construct to establish r=n!,

wp("establish r=n!", r=nt)
= (n20) and ((n=0) = wp("r:=1", r=nl)) and ((n>0) = wp("n:=n-1",
wp ("establish r=n!", wp("n:=n+1", wp("ri=rtn", p=nl)))))
= (n20) and ((n=0) = (I=n!)) and ((n>0) = wp("n:=n-1",
wp("establish ren!", wp("n:=n+1", r*n=nl))))
= (n20) and ((n>0) = wp("n:en~-1", wp("establish r=n!", r*(n+1)=(n+1)!)))

= (n20) and ((n>0) = wp("n:=n-1", wp("establish r=n!", r=nl)))

(35

28

The approximating sequence may now be formed, yielding the expected solution

n=0.

So far, we have confined our attention to direct recursion. The equations
for indirect recursions can sometimes be put in the form wp=f(wp) by sub-
stitution. The program that searches for an element in a two-dimensional array,
presented in the section titled "Exits", is such an example. It has roughly
the following form.

D1: if B1-51
| H B2+52; D2
fi
D2: if B3+S3; DI

u B4+54; D2

h
[y

By substituting for wp(Dl1, R) in the equation for wp(D2, R) we eliminate
the indirection. In general, when such a substitution is impossible, we must

solve by forming several approximating sequences simultaneously.

The predicate transformer wp(S, R) gives, for statemenﬁ(s) S and any
post—-condition R, the weakest pre-condition such that S establishes KX.
Dijkstra also introduces the 'weakest liberal pre-condition' predicate trans-
former wlp(S, R), which éives the weakest p;e-condition such that S does not
establish non R. If S is deterministic, then wlp(S, R) = non wp(S, non R).

In general, the semantic equations for wlp are as follows.

29

wlp("skip", R) = R
wlp("z:=E", R) = Rz:-E
wlp("S;35;2",R) = wlp(S;, wlp(S;, R))
wlp(IF, R) = OV%:Bi = vlp(SLi, R))
When the equations are recursive,.wlp is defined as thé weakest solution.
It may be found as the limit ofrthe approximating sequence
wipg =T
wlpi = f(wlpi_l)
Note. Monotonicity and continuity are provable for wlp, hence a
unique limit exists. Once again, this is the Scott-Strachey "least
fixed point" approach [8] if we turn our lattice upside-down and
identify "bottom" with "T" and "top" with "F". Each wlp; that
approximates élp is the unique solution of an equation for a state-

ment Si that approximates S. The Si are the same for wlp

as for wp. (End of note.)

30.

A Final Alternative

According to the semantic equation for the IF construct, every IF
contains the implicit guarded command "else*abort”; the condition Cai:Bi)
is a simplification of "glge = wp("abort", R)". As shown in the previous
section, the semantics of DO are those of IF with two exceptions: there is
an implicit recursion after each éxplicit alternative; and the implicit
guarded command is "glge+skip". Our interest in this section is in the

implicit guarded command.

As we noted in Example 3, our programs, using IF, are more robust than
those using DO. The extra robustness is due entirely to the fact that the
"olge'" alternative is "abort" in IF, and '"skip" din DO. The DO could have
been defined with extra robustness by making the implicit "else' alternative
"abort"; in that case the termination condition would have to be stated
explicitly, perhaps by the guarded command " n+1*exit"’ The }F could have
been defined without extra robustness by making the implicit "else"
alternative "skip"; this would be similar to Algol's one-tailed ﬁig...ghgg...".

The reader who has compared our programming examples with those of Dijkstra
will have noticed that Dijkstra's programs are more compact. There are two
reasons for this: one is that the call and refinement statements require the
introduction of names for portions of our programs; the other is the presence
of "skip" alternatives. Under the second suggestion of the preceeding para-
graph, our programs would be more compact. Had Dijkstra chosen to add robust-
ness by making his guards strong and including an "abort" alternative, his
programs would be less compact. The tradeoff is clegr: robustness versus
cbmpactness. We favour robustness, so we prefer the semantics of IF as Dijkstra

has defined them. But we point out the alternative.

31

A Notational Ideal

We assume in this section that wp 1is the only predicate transformer
of interest. It is wp that defines the meaning or semantics of a statement
or construct. To give the semantics of a particular statement S, one must
give wp(S, R). for all predicates R. Thus there is a certain asymmetry in
the use of the arguments. As a first suggestion, consider)denoting the
weakest pre-condition such that S establishes R by "3(R)". That is, we

shall consider each statement to be a predicate transformer.

In the semantic equaéioa for a compound’statement "S1; S2", it is pleasant
to write the component statements in the same order on both sides of the
equation:

68} ' "S1; S2"(R) = S1(S2(R))
This results from Dijkstra's 'goal oriented" approach, i.e., transforming
post-conditi;né‘to pre-conditions, together with our traditional prefix
notation for functions. But when the compoment statements are assignments,
it is anhoying to see them océurring in reverse order as subscripts. This
may be remedied by using a prefix subscript:
(2) "z:mE"(R) = :c:-E'R
so that |

"3=E; y3=D"(R) =psup(y surf)

ﬁaving made these suggestions, we are struck by how trivial, and purely

cosmetic, are the differences between the left and right sides of equations (1)

and (2). To increase the similarity, we can drop the parentheses, since we are

32

dealing with only unary, prefix operators. We are struck also by the similarity
between Dijkstra'svnotation for a guarded command, and the implication that it

gives rise to, in a semantic equation.

There is ho point in having two notations for the same thing. As a
notational ideal, we suggest that each statement should denote its meaning.
A programming language should be designed so that one need not, geparately,
give the semantic equations. Rather, every.program should denote its

semantics.

33

Conclusion

We have suggested that refinement deserves a place in a programming
language, to allow programs to retain design decisions that would otherwise
be lost. Given refinement, we see no reason to enlarge the language with
a gpecial rule td prohibit recursion; on the contrary, recursive refine-
ment is a more'flexible programming toolg allowing us to produce clearer

and more efficient programs, than the "do guarded-command-set gg" construct.

There are (at least) two reasons that récursion has been considered a
difficult programming tool. First, it has been tied to two other language
issues: parameters, and local scope (i.e., recursive procedures). It is,
however, a separable concern. Sgcond, almost every programming text explains
reéursion, as it explains all language constructs, by explaining how to trace
an exgcution according to some implementation. And that implementation in-
variably involves a stack, even though a stack is frequently unnecessary.

But a program should not be understood in terms of any particular implementation,
and cannot be understood by tracing an execution. The basis of our under-
standing of recursion, or of loops, must be the principle of mathematical

induction.

It is sometimes objected that an average person cannot be expected to
understand the principle of induction, or to apply it to programming. If
that were true, it would not be an argument against the use of induction in
programming, but against the use of average people as programmers. In fact,
average people understand the principle perfectly well, although informally.
Given a positive integer, and enough time, an average person believes he
can count from 1 to the given integer. For large enough integers, that

belief is not based on the experience of having done so, but on an implicit

34

understanding of induction. And finally, we remark that a programmer can
often use a result, such as '"measurable progress is sufficient for recursion",

whose proof is an induction, rather than using induction directly.

Our programming examples were chosen from among those that Dijkstra
used [1] to exhibit the DO construct. The ones omitted were not omitted
to hide problems that arose; on the contrary, nothing new arose in them.
The reader is invited to come to this happy conclusion for himself by
trying the remaining examples. (Dijkstra'é example 8 [1, p.68] is

particularly good. Hint 1: a repeat...until... would have improved

Dijkstra's program, as in our example 2. Hint 2: there is an error in one
of the invariants.) Only through practice with both can we judge the
relative merits of DO and recursive refinement. Initially, the latter
will be at a disadvantage; ouf judgement is, of course, affected by what we
are used to, and most of us (myself included) are used to operational
semantics and loops. But computer programming is barely 30 years old; let

us not be too set in our ways at so young an age.

35

Appendix

This appendix contains Dijkstra's solutions to the four example problems
of this paper. The presentation here is devoid of the reasoning, justifica-
tions, and other commentary that ought to accompany these solutions. It is

intended only as a reference, and not as a substitute for [1].

Example 1 [1, p.45]
x:i=X; y:=Y;
do x>y~ xi=x-y
ﬂ:c<y->y:-y-x
od;
print (x)
Example 2 [1, p.58]
rimg;
do rzdrdd:=d; do rzdd+r:=r-dd; dd:=dd+dd od

od

Example 3 [1, p.66]
xi=X; y:=Y; 3z:=1;
do y#0+do 2|y+y:=y/2; xi=xxx od; yimy-1; z:=z%z

od

Example 4 {1, p.68]
allsiz:=true; J:=0;

do j#n and allsixwallsiz:=f(j)=6; j:=j+1 od

Acknowledgement

I gratefully acknowledge discussions with Jim Horning and Art Sedgwick.
Jim Horning suggested the title, and pointed out an error in the first draft.

For the painstaking typing I thank J. Wood.

36

37

References

(1]

(2]

(3]

[4]

(5]

f6]

[7]

(8]

(9]

(10}

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, New Jersey,
1976.

E.W. Dijkstra. Guarded commands, non-determinacy, and formal derivation
of programs. CACM 18(8) p.453, August 1975.

E.W. Dijkstra. A Short Introduction to the Art of Programming. Report
EWD316, Technological University of Eindhoven, August 1971.

N. Wirth. Program development by stepwise refinement. CACM 14(4)

pP. 221-227, April 1971.

H.D. Mills. On the development of large reliable programs. IEEE
Symposium on Computer Software Reliability, pp. 155-159, New York,

April 1973.

C.A. R. Hoare. An axiomatic.basis for computer ﬁrogramming. CACM 12(10)
pp. 576-580, October 1969.

C.A.R. Hoare and N. Wirth. An axiomatic definition of the programming
language PASCAL. Acta Informatica 2, pp. 335-355, 1973.

D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. J. Fox (ed.), Computers and Automata, Wiley, pp. 19-46. 1972.

H.F. Ledgard and M. Marcotty. A genealogy of control structures. CACM
18(11), November 1975.
D.E. Knuth. Structured programming with go to statements. ACM Computing

Surveys 6(4), December 1974.

