Volume 12, number 1

INFORMATION PROCESSING LETTERS

13 February 1981

BUNCH THEORY: A SIMPLE SET THEORY FOR COMPUTER SCIENCE

Eric C.R. HEHNER

Computer Systems Research Group, University of Toronto, Toronto M5S 141, Canada

Received April 1980; revised version received September 1980

Formal languages, programming languages, set theory, grammars

1. Introduction

Perhaps because Set Theory is so useful in Mathe-

matics, Computer Science has adopted it for some pur-

poses. Sets appear explicitly in some programming
languages (e.g. SETL, Pascal), and very commonly in
reasoning about programs. Sometimes sets appear dis-
guised in other notations. For example, in Pascal, an
alternative of a case statement is labelled by a set of
selector values (here, set notation would perhaps be
too cumbersome). A programming language is a set of
programs, but we do not specify a language in set no-
tation; instead we use a grammar in the form of
rewriting rules.

Set Theory in its entirety is more powerful than
necessary for most of Computer Science. For example,
though a set theorist may define the integer 2 as
{0, {9}};, we do not view it as such. We treat it as a
primitive; we do not think of its members, or form a
union or intersection of 2 with anything. In the other
direction, we have little use for sets of uncountable
cardinalities.

We may, of course, use only those parts of Set
Theory that are useful to us, and ignore the rest. But
the notation of Set Theory, designed for power we
don’t want, is sufficiently cumbersome that we have
tended instead to invent many special notations where
a weaker set theory would have served well. These dis-
satisfactions lead us to propose a set theory that has
the right power for Computer Science, and that is no-
tationally more convenient for our purposes than ma-
thematical Set Theory. The new theory, called Bunch
Theory, does not exclude Set Theory; when appro-

priate, we can form sets of bunches, or bunches of sets.

26

2. Bunch Theory

Corresponding to a set, such as
1,36}
which contains the three integer elements 1, 3 and 6,
we introduce the bunch, written without curly braces,
ie.
159356

which contains the same three integer elements. We
shall give bunch axioms in a moment, but we already
can see a consequence of the notation: an element,
and a bunch contaming only that element, are indistin-
guishable. More generally, a bunch built from other
bunches does not retain the structure, as does a set
whose elements are sets. This corresponds well to Pas-
cal, in which sets of sets are illegal (though possibly
more from implementation than from programming
reasons). It does not correspond well to the definition
of the SETL language (sets of sets are legal), but it
does correspond to its use. In graph theory, one often
partitions a graph into sets of nodes, but it is doubtful
whether any algorithm requires the ability to specify
sets of sets of nodes. Examples may be taken from
throughout Computer Science.

We now give a definition of bunch (bunch axioms):

(1) (existence) There exist bunches that are con-
sidered ‘elementary’. Each such bunch is called an
‘element’.

(2) (specification) A predicate p on the elements
specifies the bunch consisting of those elements for
which the predicate is true. This bunch is denoted

x $ p(x).

Volume 12, number 1

(The dollar sign may be thought of as an s’ overstruck
with a ‘t’, and is pronounced ‘such that’.)
(3) (union) If a and b are bunches, then

a,b
is the bunch containing the elements of both a and b.

There are no other bunches.
For comparison with Set Theory, we list set axioms
(according to one axiomatization):

(set axioms)

(1) (existence) There exists a set.

(2) (specification) Given a set a, a predicate p on
the elements of a specifies the set consisting of those
elements for which the predicate is true. This set is
denoted

{x€alpx)}.
(3) (union) If a and b are sets, then

aUb

is the set containing the elements of both a and b.
(4) (pairing) If a and b are sets, then

{a, b}
is the set whose elements are the setsa and b.
(5) (power) If a is a set, then
28
is the set whose elements are the subsets of a.
There are no other sets.
In Set Theory, we can construct the null set ¢

from the one set whose existence is postulated, call it
z, as follows:

0 = {xEz | false}.

Though we did not know the elements (nor even the
cardinality) of z, we do know those of (3, and from it
we construct all other sets whose elements are known.
The game in Set Theory is to begin with almost
nothing (not even the null set), and build sets of un-
limited cardinalities.

As stated in the Introduction, our game is different.

We may begin, for example, with the boolean values
true and false, or with the rational numbers, or with
character strings, or with a mixture of values of differ-
ent types. From this beginning we can construct the
null bunch

INFORMATION PROCESSING LETTERS

13 February 1981

null = x § false
and the universal bunch
universe = x § true

and bunches that are ‘in between’. In Set Theory,
postulating the universal set is inconsistent, leading to
paradoxes. But the universal bunch causes no problems,
and for this reason our specification axiom is simpler.
In a sense, we begin by choosing our universe. In Com-
puter Science there is little use for sets of uncountable
cardinality, yet they are defined implicitly by the set
axioms. By choosing a countable universe of elements,
no bunches of uncountable cardinality can be con-
structed.

3. Names and operations

As in Set Theory, we introduce the relations € (ele-
ment of), € (sub-bunch of), and = (equal to). For ele-
ment x and bunch a, x € a is defined by looking separ-
ately at the three possible ways in which a was con-
structed:

(1) If a is an element then x € a means x = a.
(2)Ifaisy $ p(y) then x € a means p(x).
(3)Ifaisb,cthenx EameansxEb V xEc.

For bunches a and b,a C b is defined as (Vx) x€a =
xEbanda=bisdefinedasa Sb A b Sa. When the
left operand is an element, the relations € and < coin-
cide. For equality, the order and multiplicity of ele-
ments is irrelevant; the theory of ordered multibunches
(analogous to ordered multisets, i.e. sequences) will
not be pursued in this paper.

To give a name to a bunch, we shall write the name,
followed by a colon, followed by the bunch. For
example,

a:1,3,6

means that wherever a occurs, it stands for 1, 3, 6.
With this definition, writing

b:6,a,4

is equivalent to writing
b:6,1,3,6,4

which in turn is equivalent to writing

bl 304 6.

27

Volume 12, number 1

Note: By this notation, we mean what would be
written more typically in the style of mathematics
texts as ‘leta =1, 3, 6°. We shall assume that free sub-
stitution of value for name can be made, avoiding the
problem of clashing with bound variable names by
choosing all names to be distinct.

If o is a binary operation on the elements of our
universe, define X © Y for bunches X and Y as

XoY=2$§(@x)Fy)xEXAYyEY Az=x°Yy.
For example,

@5 2)st (0, 20) = 1112 2129 ;
@;2)£10=11,12,

1+1=2.

Parentheses are needed in the first two examples
assuming “+ has higher precedence than ‘. In the last
example, the ambiguity as to whether we are adding
bunches or integers is no more bothersome than the
ambiguity as to whether we are adding integers or
rationals.

The following defines a bunch containing the natu-
ral numbers:

natno: 0, natno + 1.

By this definition, the name natno stands for 0,
natno + 1° wherever it occurs, including in the defini-
tion itself. The bunch contains (all and only) the ele-
ments seen by repeatedly substituting ‘0, natno + 1’
for natno in the definition. Provably, natno is the
smallest bunch satisfying the equation

X=0,X+1,
i.e. the least fixed point of
f(X)=0,X+1.

Primarily for the similarity to the next paragraph,
we give one more example of an operation on bunches
that is a natural extension of (or reduces properly to)
the ‘same’ operation on numbers. For any bunch of
numbers X, let

Xo=] XRexRax.

Then, X! =X, and for larger n, X" =X # X # - x X
(n-fold multiplication) as expected.

Consider now the universe of character strings. Let
A denote the null string, and if s and t are strings, let

28

INFORMATION PROCESSING LETTERS

13 February 1981

st denote the concatenation of s and t. For any bunch
of strings S, let

SY= Skl —elg,
Also, let

St=2.8S,
S*=).S°S,
St=8,8'S,

Then,

SE=82 sl

St =50 slug2 oy
Shegl §Tig)

4. Applications
4.1. Within a programming language

We now suggest a few of the possible uses of bunch
within an ALGOL-like programming language.

In addition to the notations of the specification

and union axioms, it seems useful to introduce the
notation i to j, for suitable integer expressions i and j,
to mean the bunch k § i <k <j, thatis,i,i+1, ...,
j — 1,j. Now, perhaps with limitations, bunches are
useful in iteration control, as case statement labels,
as nameable and assignable values, as type specifica-
tions, and possibly in other ways.

A constant definition, such as

pi: 3.14

becomes just a special case of the naming notation
introduced in the previous section. One may wish to
prohibit recursion, or to include it by taking the ‘lazy
evaluation’ approach to implementation. A definition
such as

indices: 1 to 4

serves the purposes that in Pascal require the two dis-
tinct but similar notations

const indexset = set(1, 2, 3,4)
and

type indextype = 1 ..4.

Volume 12, number 1

With our definition, we may declare variable i so that
it may be assigned any element of the bunch indices
thus:

i :€ indices.
Following this declaration, the assignment
i:=2

is legal. Also with this definition of indices, we may
declare

s :C indices,

so that variable s may be assigned any subbunch of
indices. Then

s:=null, s:=1,3, s:=indices

are all legal.

By failing to distinguish a type from a value, i.e.,
by using bunch notation for both purposes, we lose
none of the benefits of so-called ‘strong-typing’, and
we gain the following important benefit: where we
want to pass a type as a parameter, we can do so with-
out inventing ‘generic’ procedures or inventing the
second-class type ‘type’. One may wish to make the
restriction that only certain bunches, e.g. manifestly
contiguous bunches, are allowable in certain contexts,
e.g. to the right of :€ and :C. This restriction is in a
redundant part of the language, so the ability to detect
errors is restricted but the ability to express the com-
putation is not.

A programming language that is not in the ALGOL
mould can be designed by taking the bunch as its cen-
tral notion. The state of the computation is a bunch;
the computation proceeds by operations on this
bunch. The initial state is either the null or the univer-
sal bunch; the final state is ‘the answer’.

4.2. As a language description

A language can be described as a bunch program of
strings, using definitions such as the following:

program: declaration” statement”™
declaration: identifier (’, “:€’, :£’) expression ¢}’
statement: variable “:=’ expression ;’,
‘if” expression ‘then’ statement®
(‘else’ statement™)” “fi’
expression: constant,

INFORMATION PROCESSING LETTERS

13 February 1981

variable,

expression (‘“+*, ‘-, ‘¥, ¢/’) expression,
identifier ‘8> expression,

expression °,” expression,

expression ‘to’ expression.

This is obviously a fragment of a grammar in a nota-
tion that is not novel. It is increasingly common to
put quotes on terminals (rather than angle brackets on
nonterminals), so that terminals can be distinguished
from metasymbols and so that blank spaces can be
described (if desired). It is also common to include a
notation for ‘zero or more of” (usually curly brackets
rather than ‘¥’), and optional (usually square brackets
rather than ?°). There are, however, differences
between our approach and the usual grammatical
approach. To show the differences, we must first out-
line the usual grammatical approach.

A context-free grammar (CFG) is defined as:

(a) a set V of terminals, plus

(b) a set Vyy of nonterminals, including

(c) a distinguished nonterminal S € Vi, plus
(d) a set of rewriting rules.

For set V, let V* be the Kleene star’ of V, i.e. the set
of all finite concatenations (strings) of elements of V
(for bunch V, V* is exactly analogous). Then, each
rewriting rule is of the form A - «, where A € Vg and
a € (Vy U Vp)*. The notation

A-> (¢4 |a2| 352 |an
is introduced as a shorthand for the n rules
A % (¢ 4]

A-)az

A -y

The rewriting rules induce a relation between strings
as follows. If A - a is a rule, then fAy - Bay for any
B,v € (VN UVr) . Let »* denote the reflexive transi-
tive closure of ->. Then « is a program if S -* « and

a €V,

Using the rewriting rule A > &, we can rewrite the
string Ay as Bary. This is similar to the mathematical
practice of substituting for variable x in formula f(x)
a formula e to obtain f(e), which is called an instance

29

Volume 12, number 1

of f(x). Indeed nonterminals are often called ‘syntac-
tic variables’ (and terminals ‘syntactic constants’), and
Bary an ‘instance’ of BA7y. But in the CFG formalism,
contrary to mathematical practice, the substitution is
not systematic. For example, in the string expression
‘+’ expression, we do not necessarily substitute the
same string for the two occurrences of expression.
Mathematical practice requires that the same new
formula e be substituted for all original occurrences of
variable x in f.

In bunch notation, the definitions for program,
expression, etc., mean that these names stand for the
entire expression to the right of the colon. Whereas
in the CFG formalism, a substitution (rewriting) is a
(non-systematic) instantiation, which may lose infor-
mation, here it is merely a replacement of a name by
its definition, losing no information. Rather than
invent a special concept (rewriting rules), we rely on
the standard mathematical practice that allows us,
with definitions

circum: 2 # pi *r, pi:3.14,

to write
circum =2 % 3.14 % r.

By systematic substitution and simplification, all ele-
ments of program are constructed (perhaps the names
programs, expressions, etc., would be more appro-
priate).

In the CFG formalism, a nonterminal is an elemen-
tary symbol. We must repeatedly rewrite a string to
eliminate nonterminals, and therefore the (reflexive)
transitive closure = is defined. In bunch notation, a
name, such as program or expression, is not an elemen-
tary symbol. We cannot form, nor is there a need to
form, a bunch corresponding to the set V. The rela-
tion that corresponds to =" is simply the subbunch
relation C. For example, with the definition

A:ay,0;,...,0,,

we have, for each i,

o CA,

and, for any bunches 8 and 7,

By € BAY

precisely because we do not treat the symbol A dif-

ferently from what it stands for.

30

INFORMATION PROCESSING LETTERS

13 February 1981

To extend the CFG formalism to allow the right
side of a rewriting rule to be a regular expression, we
must introduce a*, where a is a regular expression,
and metaparentheses, and extend the meaning of
rewriting rules. This new #* is annoyingly similar to,
but not identical to, the Kleene star (« is a regular
expression whereas V is a set). The entire exercise is
more complicated than necessary. Bunch theory uses
fewer definitions to accomplish the same purpose, and
very few that are specific to this purpose. No contri-
bution to parsing theory is claimed here. We have
merely restated the parsing problem as the design of a
bunch membership algorithm.

5. Conclusion

As research in Computer Science proceeds, we
make new definitions, invent new notations, and coin
new terms at a dizzying speed. The research can hardly
be said to proceed in a straight line, from first prin-
ciples to a desired end. Rarely does one piece of
research extend directly from another; usually it pro-
jects from the middle of the previous research at an
angle. Only parts of the previous research remain use-
ful. At the same time, at another place, others invent
other rats’ nests of definitions, notations, and terms
that span the same space. And all of these remain in
use even though they overlap and are only partly
appropriate for our current state.

From time to time it is worthwhile to draw the
straight line from first principles to present location.
Of course, any new line may be viewed as a contribu-
tion to the mess, and some people may be disap-
pointed that this paper (in some sense) does not cover
any new ground. That is not its intention. We hope
that the simplicity (beauty), and generality (useful-
ness) of our definitions and notations will make them
a welcome replacement for a large number of others.

Acknowledgment

I thank Brad Silverberg for his comments on a
rough draft, the members of IFIP Working Group 2.3
for giving these ideas a hearing, and Bill McKeeman
for constructive criticism.

