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A brief introduction to the main idea underlying boundary algebra.

Binary Algebra

We start with a small fragment of binary algebra (also known as boolean algebra).  The fragment 
includes constant  ⊤  (true), variables such as  x  and  y , prefix operator  ¬  (negation), and infix 
operator  ∧  (conjunction).  We give  ¬  higher precedence than  ∧ , so we need brackets  ( )  to 
negate a conjunction.  Here is an example expression:

¬(¬x∧¬¬⊤)
With this fragment of binary algebra we can express the equivalent of any binary algebra 
expression.  (In fact, we don't need  ⊤  for completeness.)

Bracket Algebra

Bracket algebra is a syntactically different algebra that corresponds exactly to the fragment of 
binary algebra just presented.  Its expressions are formed from variables such as  x  and  y , and 
brackets  ( ) .  To negate an expression, put  ( )  around it.  For example,  (x)  is “not  x ”.  To 
conjoin two expressions, just sit them next to each other.  For example,  what we wrote as

¬(¬x∧¬¬y)
we now write as

((x)((y)))
And finally, what we wrote as  ⊤  we now write as nothing.  For example,

¬(¬x∧¬¬⊤)
becomes

((x)(()))
Writing  ⊤  as nothing raises a question:  How do you know where the nothings are, and how 
many nothings there are?  In the expression we just wrote, maybe there's a nothing just before  x , 
and another between  )( , and two of them between ( ) .  If so, then the bracket algebra expression

((x)(()))
means the same as the binary algebra expression

¬(¬(⊤∧x)∧⊤∧¬¬(⊤∧⊤))
In binary algebra,  ⊤  is the identity for  ∧   so  ⊤∧x  and  x∧⊤  are both equivalent to  x .  In 
other words, occurrences of  ⊤∧  and  ∧⊤  can be added or deleted without changing the 
meaning of the expression.  So the previous expression is equivalent to

¬(¬x∧¬¬⊤)
This is just like adding or deleting occurrences of  0+  and  +0  to an arithmetic expression.  In 
bracket algebra, it doesn't matter where or how many nothings there are.  Two of them, one of 
them, even zero of them, all have the same meaning.

The expressions of bracket algebra are all and only those expressions with properly matched 
pairs of parentheses  ( ) , with proper nesting, with variables sprinkled anywhere.

There are three proof rules in bracket algebra.  If  x ,  y , and  z  are any bracket algebra 
expressions, then

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca


2021-7-20 1

((x)) can replace or be replaced by x double negation rule
x( )y can replace or be replaced by ( ) base rule
x y z can replace or be replaced by xʹ y zʹ context rule

where  xʹ  is  x  with occurrences of  y  added or deleted, and similarly  zʹ  is  z  with occurrences 
of  y  added or deleted.  The context rule does not say how many occurrences of  y  are added or 
deleted;  it could be zero or more.  Expressions obtained from each other by following the rules 
have the same meaning.  To prove truth, you just follow the proof rules until the expression 
disappears.  For example, the binary algebra expression

¬(¬a∧b∧¬(¬a∧b))
becomes the bracket algebra expression

((a)b((a)b))
Here is a proof of this expression.

((a)b((a)b)) use context rule: empty for  x ,  (a)b  for  y ,  ((a)b)  for  z
becomes ((a)b(       )) use base rule:  (a)b  for  x  and empty for  y
becomes (       (       )) use double negation rule
becomes this line is empty

Since the last expression is empty, all these expressions express truth.  Here is another example.  
The binary algebra expression

¬(¬(a∧b)∧¬(¬a∧b)∧¬(a∧¬b)∧¬(¬a∧¬b))
becomes the bracket algebra expression

((ab)((a)b)(a(b))((a)(b)))
Here is its proof.

((ab)((a  )b)(a(b))((a     )(b))) context: insert  b
((ab)((ab)b)(a(b))((a     )(b))) context: delete  (ab)
((ab)(       b)(a(b))((a     )(b))) context: insert  (b)
((ab)(       b)(a(b))((a(b))(b))) context: delete  (a(b))
((ab)(       b)(a(b))(          (b))) context: delete  (b)  twice
((ab)(       b)(a     )(              )) base
(                            (              )) double negation

this line is empty

To prove falsity, follow the rules until the expression becomes  ( ) .

Interpretations and Abstraction

As presented, we interpret nothing as  ⊤  (truth), parentheses as  ¬  (negation), and adjacency as  
∧   (conjunction).  There is another, dual way to interpret the symbols and rules of bracket 
algebra:  interpret nothing as  ⊥   (false), parentheses as  ¬  (negation), and adjacency as  ∨  
(disjunction).  In binary algebra,  ⊥  is the identity for  ∨  so  ⊥∨x  and  x∨⊥  are both equivalent 
to  x .  In other words, occurrences of  ⊥∨  and  ∨⊥  can be added or deleted without changing 
the meaning of the expression.  In bracket algebra, in either interpretation, it doesn't matter where 
or how many nothings there are.  The rules of proof remain the same in both interpretations;  in 
the dual interpretation, proving falsity means following the rules until the expression disappears, 
and proving truth means following the proof rules until the expression becomes  ( ) .

Because the syntax and proof rules remain the same for both interpretations, bracket algebra can 
be conducted without committing ourselves to either interpretation.  It is an abstract algebra. 
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I prove  a b  is equivalent to  b a .  Here is the proof.
a b context: nothing for  x ,  a  for  y ,  b  for  z
a b a context: ab  for  x ,  a  for  y , nothing for  z
b a

I prove  a a  is equivalent to  a .  Here is the proof.
a a context:  a  for  x ,  a  for  y , nothing for  z
a

The brackets  ( )  just distinguish what is between them from what is outside them.  In either 
interpretation,  x(y)  is equivalent to  (y)x ;  all that's important is that  x  is outside the brackets, 
and  y  is inside the brackets.  The brackets make one basic distinction (inside versus outside), 
and that's all that's needed for binary algebra.

There is yet another interpretation of bracket algebra.  Its expressions can represent sets.  We 
write the empty set as  {} .  Variables are elements, which may be sets.  For example:

{{a}, b, {{}}}, {}, c
Sets are represented in bracket algebra just by removing the commas and changing the shape of 
the brackets.  The example becomes

((a)b(()))()c

The proof rules for the set interpretation are:
x y  can replace or be replaced by  y x symmetry rule
x x  can replace or be replaced by  x idempotent rule

The symmetry rule says that the order of elements is irrelevant.  The idempotent rule says that 
repetition of elements is irrelevant.

It has been proven that all of mathematics can be implemented as sets.  This proves that bracket 
algebra is also expressive enough to represent all of mathematics.

Box Algebra

Bracket algebra, like binary algebra, and most of mathematics, is one-dimensional.  Expressions 
are formed as a sequence of symbols.  We now move up to two dimensions.  A plane box 
distinguishes what's inside it from what's outside it.  That's enough for an algebra.  The boxes can 
be anywhere in the plane, as long as they are properly nested, one inside the other, or properly 
beside each other, not overlapping.  In other words, box boundaries cannot cross each other.  
Variables can be anywhere.  And you can say there are as many nothings as you want anywhere 
you want.  In one interpretation, the nothings represent truth;  putting things (nothings, variables, 
and boxes) in the same space (you can draw a line from one thing to the other without crossing a 
box boundary) means conjunction;  and a box negates what is inside it.  The other interpretations 
work similarly.  You can move anything around anywhere in its space (not crossing a box 
boundary) without changing the meaning.  The proof rules need to be reworded to apply to two 
dimensions. 
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Boundary Algebra

Obviously, it doesn't matter if the shape of the boundary is rectangular, circular, or irregular;  
what matters is that it distinguishes what's inside it from what's outside it.  And we could move to 
higher-dimensional spaces and tell the same story.  So that's boundary algebra.  But there is so 
much more to say.

Boundary algebra is the work of Philip Meguire of the University of Canterbury in Christchurch, 
New Zealand.  He has written a beautiful and comprehensive 150-page book titled “Boundary 
Algebra:  a Simpler Approach to Boolean Algebra and Sentential Logic”, 2023.  I have the honor 
of both the opening and the closing quotations in the book;  I sincerely hope that does not negate 
the contents 😜 .  Meguire owes some of his inspiration to George Spencer-Brown: Laws of 
Form, 1969.  Before that, Charles Sanders Peirce (1839-1914) had the basic idea.  The bracket 
notation is due to C.Croskin: Ways of Knowing, 1978.

I feel obliged to mention the Plex philosophy of Douglas T. Ross (1929-2007).  Doug tried to 
explain it to me many times, but I never understood any of it.  Doug talked about “nothing”, and 
quoted Spencer-Brown and Peirce, so I wonder if Plex might be related to boundary algebra.  
Doug also talked about “not even nothing”, and that left me behind.


