EXACT ARITHMETIC USING A VARIABLE-LENGTH P-ADIC REPRESENTATION

R. Nigel Horspool
School of Computer Science
McGill University
805 Sherbrooke St. West
Montreal, Canada, H3A 2K6

Summary

The p-adic number system is introduced and
developed into a form suitable for performing exact
arithmetic in computers. The proposed represent-
ation has several desirable attributes: the four
standard arithmetic operations have a simple con-
sistent form, the programmer has the ability to
choose the precise degree of accuracy in his cal-

culations and the variable-length nature of the rep-

resentation achieves compact encodings.
1. Introduction

The usual arabic number system represents the
positive integers as a conceptually infinite
sequence of digits

e di.....d3d2d1dO

which represents the number

© i .

.Ln, d. b" where b is the base

i=0 i

The rule that leading zeros may be omitted results
in a finite representation for every positive
integer.

The notation can be modified for use as the
internal representation of numbers in computers.
A common modification is to truncate the sequence
to a fixed number of digits:

dn_1 dn_2 . d2d1d0

and a generalization to the rule that integers
modulo b~ are represented by the sequence gives us
negative integers. Thus the radix-complement

number system is often introduced.

Radix-complement integers are convenient for
circuit designers, but they do not satisfy all the
requirements of programmers. One major limitation
is that only a fixed range of integers are repres-
entable, forcing the programmer to program in such
a way as to avoid overflow. Furthermore, space is
wasted because the smaller integers occur more
frequently than larger integers and should receive
shorter encodings. A second limitation is that
rational numbers are not directly representable.

The restriction to a fixed range of integers

can be lifted by permitting variable~length numbers
encodings. The variability makes storage manage-

CH1412-6/78/0000-0010$00.75 (c) 1978 IEEE

Eric C. R. Hehner
Department of Computer Science
University of Toronto
Toronto, Canada, M5S 1A7

ment more difficult - the amount of storage
initially allocated to a variable may prove to be
insufficient as the computation proceeds. Some
scheme involving indirection to access numbers with
longer encodings is almost essential. However an
implementation of variable-length integers has been
analyzedl and a 317 saving in space~time cost, com-
pared to a fixed length encoding, reported. (The
space-time product takes into account not just the
decrease in storage used but it also includes
increases in processing time due to occasional
indirect accesses to numbers and the storage
management costs.)

The ability to represent rational numbers can
be obtained in many ways. One method is to
represent rationals by pairs of integers: a
numerator and a denominator. In this form, multi-
plication and division are reasonably easy, but
addition and subtraction are harder and normal-
ization is difficult.% Since addition and sub-
traction are the operations needed most often, a
representation where those operations are simpler
than multiplication and division would be prefer—
able. Such a representation is the Hensel code?
which, depending on the length of the code, can
represent any rational a/b where a and b are not
greated than some integer N. The Hensel code is,
in fact, a fixed-length analogue of the represent-
ation introduced in this paper.

O0f course, the most common computer approxim-
ation to the rationals is obtained by inserting a
radix point into the sequence of digits. It can be
implemented by having a special "point" code that
can appear in the sequence or, alternatively, the
position of an implied radix point can be indicated
by a separate exponent field. 1In the latter case,
we have the usual floating-point number represent-
ation. The chief drawback is that only rationals
such that the denominator (in lowest terms) divides
some power of the number system base can be repres-
ented. Hence most arithmetic operations introduce
a certain amount of "round-off" error.

In the remainder of this paper, we will
describe a variable-length scheme for represent-
ing rational numbers. The scheme will permit both
exact arithmetic and approximate arithmetic, where
the programmer can choose the degree of accuracy.
(This is not just the usual choice between single
precision and double precision available with many
machines.) Our other aim in devising the new
scheme is to provide simpler, more consistent,

S

arithmetic algorithms than are applicable to con- unaltered, even on the negative integers. For
ventional number representations. example, multiplying minus two by minus-three pro-
ceeds as follows:
2. P-adic Numbers

& 9'8

, P-adic numbers were first devised and their 97
properties explored by a mathematician, Kurt Hensel, ...99986
at the turn of the century. His results appeared ...99982
in a sequence of publications that culminated in ...99982
two books“*~. More recently, p-adic numbers have ...99982

been utilized by Krishnamurthy, who has developed
a fixed-length encoding suitable for performing

exact arithmetic within a limited range6’ LN = ...0006
= 0'6
The p-adic number system has properties that
make it attractive for use in many computer applic- The usual division algorithm cannot be applied
ations. Yet most practicioners are unaware of this however. A division that does not have an integer
system. We will therefore develop the represent- result would force us to introduce the notion of
ation in a straightforward manner and at the same radix point and an infinite sequence of digits to
time, show how the four standard arithmetic operat- the right of the point to represent a fractional
ions and conversions to standard notation may be part. A left-to~right division process is also not
performed. (obviously) meaningful for a sequence of digits
that extends infinitely far to the left. Conse-
We begin with the usual notation for non-neg- quently, we shall divide from right to left. For
ative integers. That is, an infinite sequence of example, 1092 divided by 7:
digits ...d,d,d.d, where each d. represents an
integer in the Fange (<d.,<b, b ts the base of the . 136
number system and b is an integer greater than one. 0'7) 0'1092
From this starting point, the representation for __Qlﬁg
negative integers can be found through performing 0'105 result = 0'156
a subtraction. A subtraction yielding a positive _0'35
result can be performed by the usual method. We 0'7
therefore see "what happens" when the result is
i negative. For example, we can try subtracting one The result is generated digit-by-digit from right
% from zero in base 10: to left. We simply select a digit which when
4 multiplied by the divisor, cancels the next digit
0000 (working from right to left) of the dividend. We
s 0001 temporarily limit ourselves to certain divisors
=....9999 that make our division process both possible and
unambiguous.
To subtract the rightmost digits, we must perform a
"borrow" - yielding 9 for the rightmost digit of The method works just as simply on negative
the result. The borrow is usually implemented in numbers and even when the result is not an integer.
hardware by subtracting the next digit of the sub- As a simple example, minus-one, 9', divided by 3
trahend plus one from the next digit of the minu~ yields 3', in decimal. As a more complicated
end. This gives us another subtraction of onme example, minus eighty-five divided by thirty-seven:
from zero and so the process repeats. The result
is an unending sequence of nines. . 7295
0'37) 9'15
Through infinite, the sequence can be repres-— 0'185
ented finitely. We will use an apostrophe to §'730
indicate that the digit(s) to its left repeat. 0'333
Thus zero is 0' and minus-one is 9'. By performing 9'640
more subtractions, we can construct representations _0'74
for all the negative integers. Some of these are 9'890 result is 729'5
shown in Table 1. The similarity to the radix-com- 0'259
plement system should be apparent. To obtain the 9'730
radix-complement representation of an integer, we
simply truncate the infinite sequence of digits. The calculation halts after this finite number of
It should therefore not require verification here steps because we obtain a difference that has
that the addition and subtraction algorithms work occurred previously. Recognition of where the
consistently on our representations of the integers. earlier difference occurred enables us to insert
In fact, the usual radix-complement rule for negat- the apostrophe at the correct position in the ans-
ing a number works also: complement each digit wer,
(replace 0 by 9, 1 by 8 etc., in decimal) and then
add one. Note that the division process is well defined
only when the rightmost digit of the divisor is
The usual multiplication algorithm works non-zero and relatively prime to the base. In

11

decimal, this requires the divisor's final digit to
be 1, 3, 7 or 9. The restriction is needed to
guarantee the existence and uniqueness of an
appropriate multiple of the divisor that cancels
the rightmost digit of each successive difference
in the division process. We will return to the
problem of division later, after extending the
representation.

3. Extending the P-adic Numbers

The general form of a number in our represent-

ation is:
d e d d ce d
dn+m n+m-1 dn+l n n-1 dZdl 0

This notation, in fact, describes only a subset of
the p-adic numbers. If the digit sequence is not
required to repeat then some irrational and imagin-
ary numbers are also representable”. However, the
simple repetition scheme is more convenient for
implementation in computers.

The number represented by the digit sequence,

above, can be shown to be

n n+m i m

1o 4P Ty 45D /(-1
where b is the number system base. This formula
may be obtained algebraically. We omit the deriv-
ation here, but as a simple example consider the
meaning of 3' in base 10. With the usual rules,
3=) 3t = 3%1/(-b) = 3/(-9) = -1/3 . We
are, of course, outside the radius of convergence
of the summation formula used. However, since we
do not actually need to perform the summation -
only to assign meanings to digit sequences - there
is no difficulty.

Working from the formula above, we find that
rational fractions of the form r/s, in lowest
terms, are representable if and only if s is co-
prime to the base, b. (If b and s are coprime,
them bS-1 is divisible by s and the expansion of
r/s in the required form is clearly possible.)
Contrast this with the floating-point number system
where a rational r/s, in lowest terms, is repres-
entable if all the factors of s are also factors of
the base b. Our representation scheme and the
floating-point number system are complementary in
a genuine sense. Combining the two schemes renders
all rationals representable. One means of combin-~
ing them is to insert a radix point. For example,

12'34 10 = 12'3.4
12'3.4 2 10 = 12'34

12'34 2 10 = 1.2'34
1.2'34 2 10 = ,12'34
J12'34 0+ 10 = .21'234

The last example indicates that an exponent
notation is probably more appropriate for a
machine representation. Hence the last example
could be written as 12'34E-5,

The notation does not, in itself, guarantee a
unique representation for each rational. TFor
example, 12'34E-5 can be written as:

12'340E-4
or 21'234E-5
or 1212'34-5

We adopt the rule however that the normal form is
that representation which has the shortest mantissa.
This yields a unique normal form for every rational
except zero (which can have an arbitrary exponent
value). The normalization process has three parts.
First, the repeating part of the number must be
"factored" if it consists of a repeating subse-
quence. Second, trailing zeros should be deleted
from the mantissa and the exponent incremented as
required. Third, the repeating part must be
"rolled" as far to the right as possible, elimin-
ating redundant digits from the non-repeating part
of the mantissa. The first part of the normal-
ization process is a non-trivial task when the
repeating part of the representation contains a
large number of digits.

4. Arithmetic Algorithms

Some of the algorithms below terminate only
when a repeated state in the calculation is recog-
nized. A method attributed to Richard Brent® may
be the most convenient way of recognizing repeated
states. Denoting the i-th state by S5 the method
can be written algorithmically as:

for i: = 1,2,4,8, ... do
for j: = it+l, i+2, i+3, ... 2%i do
if s, = s, then
=5y i Lhen
stop; {repetition with period j-i}
This approach requires that only one previous state
be remembered. It does not necessarily discover
the first repeated state, but this does not cause

our arithmetic algorithms any difficulties if
results are normalised.

4.1 Addition and Subtraction

The number with the smaller exponent is
denormalized by appending zeros to the right of the
mantissa, so that both numbers have the same
exponent. Then both mantissas are added, digit-by-
digit from right to left. The repeating parts are
rescanned from right to left ag many times as are
needed. The addition stops only when a repeated
state in the calculation is recognized and the
period of the cycle determines the length of the
repeating part. The result is a possibly unnormal-
ized number in our representation.

4.2 Multiplication

Multiplication can be realized as a repeated
addition of simple (one digit) multiples of the
multiplicand. 1In the binary system, this is
exactly the usual shift-and-add algorithm. A
repeated state can be recognized in exactly the
same way as with addition or subtraction. Once
again, postnormalization of the result is required.

4.3 Division

If the number system has a prime number for

its base, division is exactly analogous to multi-
plication. The correct multiple of the divisor to
use is determined by a simple table look-up on the
last digit of the dividend remaining at each step.
This multiple of the divisor is subtracted from
the dividend and the process repeated. 1In binary,
this method is simply shift-and-subtract. As
before, the process repeats until a previous state
reoccurs.

When the number system has a composite base
some extra labour may be required. 1In the decimal
system, for example, all multiples of two and five
must be "cast out" of the divisor's mantissa.
Suppose that the divisor's mantissa ends in an even
digit. In this case, both the dividend and divis-
or should be multiplied by five. If the final
digit is 5, both the dividend and divisor are mul-
tiplied by two. This process can be repeated as
required (and any trailing zeros appearing in the
mantissa are incorporated into the exponent). Once
this preprocessing has been accomplished, the div-
ision algorithm given above can proceed.

4.4 Sign Determination

Given a mantissa in the general form dn

'
dn+l dn..

determined.

i
.dldO , the sign of the number is easily

Assuming that the representation is normal-

ized, then the method is

(a) test whether the mantissa is zero (0').

(b) If non-zero, then test whether there are
any digits to the right of the quote symbol.
If there are none, the number is negative.
0 s q: . f

(c) therwise, compare dn+m and dn I

d <d , the number is positive. If
n+m n

d +m >dn, the number is negative. (Note:

n

d #d
n

for a normalized number.)
n+m

4.5 Comparisons

The most easily stated method of comparing
two numbers is to compute their difference and
check the sign of the difference. A more direct
algorithm does exist, but its explanation is too
long to warrant inclusion here. We note only that
four digits at a time (two from each operand) must
take part in the comparison process.

4.6 Conversion to and from Right~Repeating Form

In standard decimal notation, any real number
is representable as a digit sequence that extends
infinitely far to the right of the decimal point.
When the number is rational, the decimal expansion
is guaranteed to be pericdic - hence our use of
the term "right-repeating form'.

There is a very close relationship between
our representation of a number and its represent-
ation in right-repeating form. As a striking
example, consider -1/7 which in our notation is
142857' and as a decimal expansion is -0.747857.

13

We can take advantage of this relationship to con-
struct simple algorithms for conversion between the
two systems,

(a) Conversion to right-repeating form

Simply subtract the repeating part from the
non-repeating part with the leading digits
aligned and the repeating part extended
indefinitely to the right. For example,

12'345 = 345 - 121.21 = 223.78
123'45 = 45 - 12.312 = 32.687
43'21 21 - 43.43 = -22.%3

(b) Conversion from right-repeating form

The steps given under (a) are simply
reversed. For example,

2.35 = 0'2_- 3&' = 56'8
1.234 = 12.34E-1
0'12E-1 - 34'E-1 = 65'78E-1

4.7 Approximation

As arithmetic operators are repeatedly applied
in the course of a program's execution, the length
of representation of results will tend to grow
enormously. Therefore storage costs increase and
also the speed of the arithmetic operations will be
decreased. This is an inevitable consequence of
requiring perfect accuracy for all computations.

Not all users, however, require perfect accur-—
acy for all the calculations in their programs. In
an ideal computer system, the user should be free
to select his own desired accuracy. Rather than
define approximate addition, subtraction, multi-
plication and division operations, we will intro-
duce a separate approximation operator. Given a
number n and a tolerance t, an ideal approximation
operator would attempt to find the shortest number
that is within the desired range n + nt. Such an
operator is very hard to implement. Instead we
propose that the number be converted to right-
repeating form and then simple truncated. For .
example, 12'34.567 is first converted to 22.44578
and then truncated to 0'22.4458, to 0'22.446, or to
0'22.45, etc. 1If the final truncated result has k
digits to the right of the radix point, the error
introduced by the approximation is less then b™K.
The desired value of k is an appropriate parameter
for this form of approximaticn.

5. Discussion

In common with all representation schemes, our
proposal has both advantages and disadvantages.
Amongst its advantages we have:

(a) The four standard arithmetic operations
process their operands digit-by-digit
from right to left. (This is a property
also possessed by Hensel codes”.)

(b) All rational numbers are representable.

(c) 1t is a relatively simple matter to provide
the programmer with complete control over

the accuracy of the arithmetic operations.

(d) Since the most frequently encountered
numbers (e.g., zero and one) receive short
encodings, storage is used more efficiently
than with fixed-length number represent-
ations~.

(e) The representations are easily converted to
the familiar right-repeating form.

Amongst its disadvantages, we cite

(a) The length of the representation does not
depend, in a uniform way, on the magnitude
and accuracy of the number. Ience the
storage requirements of a program could be
quite unpredictable.

(b) Not all the operations can easily be
implemented as right-to-left algorithms.
Comparison, normalization and approximation
fall into this category.

o : 0
1 0'1 -1 9’
2 0'2 -2 : 9'8
3 0'3 -3 : 9'7
4 0'4 -4 9'6
9 : 0'9 -9 : 9'1
10 ¢ 0'10 -10 : 9'0
11 : 0'11 -11 : 9'89
Table 1
Acknowledgements

We give our thanks to Bill McKeeman for his

comments and to Don Knuth and a referee for provid-
ing additional reference material. We gratefully
acknowledge the receipt of financial support from
the National Research Council of Canada.

1.

References

E.C.R. Hehner, Computer Design to Minimize
Memory Requirements. Computer, vol. 9, no. 8,
pp. 65-70, Aug. 1970.

K. Hensel, Theorie der algebraischen Zahlen.
Leipzig-Berlin, 1908.

K. Kensel, Zahlentheorie. Berlin-Leipzig, 1913.
B.K.P. Horn, Rational Arithmetic for Mini-
Computers. M.I.T., Cambridge, Mass. (IEEE
Repository number R77-247).

D.E. Knuth, The Art of Computer Prograrmming
volume 2, Seminumerical Algorithms, Exercise
31, section 4.1. Addison-Wesley, Reading,
Mass. 1969.

D.E. Xnuth, Personal Communication, 1978.

E.V. Krishnamurthy, T. Mahadreva Rao,

K. Subramanian, Finite Segment P-adic Number
Systems with Applications to Exact Computation.
Proc. Indian Academy of Sciences, vol. LXXXI,

section A, no. 2, 1975.

E.V. Krishnamurthy, T. Mahadreva Rao,

K. Subramanian, P-adic Arithmetic Procedures
for Exact Matrix Computation. Proc. Indian
Academy of Sciences, vol. LXXXII, section A,
No. 5, 1975.

E.V. Krishnamurthy, Matrix Processors Using
P-adic Arithmetic for Exact Linear Comput-

ations. IEEE Trans. on Comp., vol. C-26, No.

pp. 633-639, July 1977.

7,

