Express formally that

This exercise illustrates the need for formalization. Even carefully worded informal specifications can be misunderstood.

(a) natural \(n \) is the largest proper (neither 1 nor \(m \)) factor of natural \(m \).

Define predicate \(p \) so that \(px \) means that \(x \) is a proper factor of \(m \).

\[p = \langle x: \text{nat} \to m: x \times \text{nat} \land x + 1 \land x + m \rangle \]

Then the expression we want is

\[pn \land \forall x: \text{nat}: p x \Rightarrow x \leq n \]

or equivalently

\[n = \text{MAX} x: (\$p): x \]

(b) \(g \) is the greatest common divisor of naturals \(a \) and \(b \).

\[a, b: g \times \text{nat} \land \neg \exists h: \text{nat}: a, b: h \times \text{nat} \land h \geq g \]

(c) \(m \) is the lowest common multiple of naturals \(a \) and \(b \).

Is 0 a multiple of \(a \) and \(b \)? If so, the answer is \(m = 0 \). If not, then

\[m: (\text{nat} + 1) \times a \times (\text{nat} + 1) \times b \land \forall z: (\text{nat} + 1) \times a \times (\text{nat} + 1) \times b \times m \leq z \]

or

\[m = \text{MIN} m: (\text{nat} + 1) \times a \times (\text{nat} + 1) \times b \times m \]

(d) \(p \) is a prime number.

Here are some possible answers.

\[\forall n: \text{nat}: p: n \times \text{nat} \Rightarrow n = 1 \lor n = p \] says 0 isn't prime and 1 is

\[\forall n: 0, \ldots, p: n \times \text{nat} \Rightarrow n = 1 \] says 0 and 1 are prime

\[\notin \forall n: 0, \ldots, p: n \times \text{nat} = 1 \] says 0 and 1 aren't prime

\[\notin \forall n: 0, \ldots, p: n \times \text{nat} = 2 \] says 0 and 1 aren't prime

\[p: \text{nat} + 2 \land \neg (p: (\text{nat} + 2) \times (\text{nat} + 2)) \] says 0 and 1 aren't prime

These answers agree on whether numbers in \(\text{nat} + 2 \) are prime, but they disagree on 0 and 1. Most mathematicians want to exclude 1, and they haven't thought about 0.

(e) \(n \) and \(m \) are relatively prime numbers.

\[\forall f: \text{nat}: n, m: f \times \text{nat} \Rightarrow f = 1 \]

or \[\notin \forall f: \text{nat}: n, m: f \times \text{nat} = 1 \]

(f) there is at least one and at most a finite number of naturals satisfying predicate \(p \).

\[1 \leq \notin (\forall n: \text{nat}: \text{pn}) < \infty \]

and if \(\Box p = \text{nat} \),

\[1 \leq \notin (\forall p) < \infty \]

(g) there is no smallest integer.

\[\neg \exists i: \text{int} \lor \forall j: \text{int} : i \leq j \]

OR \[\forall i: \text{int} \lor \exists j: \text{int} : j < i \]

(h) between every two rational numbers there is another rational number.

\[\forall x, z: \text{rat} : x < z \Rightarrow \exists y: \text{rat} : x < y < z \]

One could argue that it should be

\[\forall x, z: \text{rat} \lor \exists y: \text{rat} : x < y < z \lor z < y < x \]

because it doesn't say “between every two different rational numbers”, or one could argue that “two rational numbers” means “two different rational numbers”.

(i) list \(L \) is a longest segment of list \(M \) that does not contain item \(x \).
§ Let the type of item be \(T \). Define
\[
P = (A: [*T] \to \exists i, j: 0,..,\#M+1 \cdot i \leq j \land A = M[i,..,j] \land \neg x: M(i,..,j))
\]
so that \(PA \) means “ \(A \) is a segment of \(M \) that does not contain item \(x \)”. Now the answer is
\[
PL \land \neg \exists A: [*T] \cdot PA \land \#A > \#L
\]

(j) the segment of list \(L \) from (including) index \(i \) up to (excluding) index \(j \) is a segment whose sum is smallest.

§
\[
0 \leq i \leq j \leq \#L \land \forall x: 0,..,\#L+1 \cdot \forall y: x,..,\#L+1 \cdot (\Sigma L[i,..,j]) \leq (\Sigma L[x,..,y])
\]

(k) \(a \) and \(b \) are items of lists \(A \) and \(B \) (respectively) whose absolute difference is least.

§
\[
a: A(0,..,\#A) \land b: B(0,..,\#B)
\land \neg (\exists c: A(0,..,\#A) \cdot \exists d: B(0,..,\#B) \cdot \text{abs}(c - d) < \text{abs}(a - b))
\lor (\exists i: 0,..,\#A \cdot \exists j: 0,..,\#B \cdot Ai=a \land Bj=b)
\land \neg (\exists i: 0,..,\#A \cdot \exists j: 0,..,\#B \cdot \text{abs}(Ai - Bj) < \text{abs}(a - b))
\]

(l) \(p \) is the length of a longest plateau (segment of equal items) in a non-empty sorted list \(L \).

§ Define
\[
P = (p: 1,..,\#L+1 \to \exists i: 0,..,\#L+1-p \cdot Li=L(i+p-1))
\]
so that \(PP \) says that \(p \) is the length of a plateau in a non-empty sorted list \(L \). Now the answer is
\[
P + 1 \land \neg PP (p+1)
\]

(m) all items that occur in list \(L \) occur in a segment of length 10.

§ It doesn't say the segment must be in list \(L \), but surely that is intended. Must an item occur as many times in the segment as in the list? Probably not. Can it be a different segment for each item? If so, it's trivially true for any list of length at least 10. It must mean that in list \(L \) there is a segment of length 10 containing all items that occur anywhere in list \(L \).
\[
\#L \geq 10 \land \exists i: 0,..,\#L-9 \cdot \forall j: 0,..,\#L \cdot \exists k: i,..,i+10 \cdot Lj=Lk
\]
\lor
\[
\#L \geq 10 \land \exists i: 0,..,\#L-9 \cdot L(0,..,\#L): L(i,..,i+10)
\]

(n) all items of list \(L \) are different (no two items are equal).

§
\[
\neg \exists i, j: 0,..,\#L \cdot i \neq j \land Li=Lj
\]
or
\[
\forall L(0,..,\#L) = \#L
\]

(o) at most one item in list \(L \) occurs more than once.

§
\[
\neg \exists i, j, k, l: 0,..,\#L \cdot i \neq j \land k \neq l \land Li=Lj+Lk=Li
\]

(p) the maximum item in list \(L \) occurs \(m \) times.

§ If the question means exactly \(m \) times, then the answer is
\[
\#L = (\text{MAX } L) = m
\]
If it means at least \(m \) times, then the answer is
\[
\#L = (\text{MAX } L) \geq m
\]

(q) list \(L \) is a permutation of list \(M \).

§
\[
\forall x: (\#L \cdot Li=x) = (\#M \cdot Mi=x)
\]