Formalize the statements
Everyone loves my baby.
My baby loves only me.
I am my baby.
and prove that the first two statements imply the last statement.

\[\forall p \cdot (p \text{ loves } mybaby) \wedge (mybaby \text{ loves } me) \wedge \neg (\exists p \cdot p \neq me \wedge (mybaby \text{ loves } p)) \]

Now the proof: starting with the first two statements,
\[(\forall p \cdot (p \text{ loves } mybaby)) \wedge (mybaby \text{ loves } me) \wedge \neg (\exists p \cdot p \neq me \wedge (mybaby \text{ loves } p)) \]

\[= (\forall p \cdot (p \text{ loves } mybaby)) \wedge (mybaby \text{ loves } me) \wedge (\forall p \cdot p = me \vee \neg (mybaby \text{ loves } p)) \]

\[\Rightarrow (mybaby \text{ loves } mybaby) \wedge (mybaby \text{ loves } me) \wedge (mybaby = me \vee \neg \top) \]

\[\Rightarrow mybaby = me \]

I suspect that “Everyone loves my baby.” should be formalized as
\[\forall p \cdot p \neq mybaby \Rightarrow (p \text{ loves } mybaby) \]
and then the last statement is not provable from the first two.