There are some people, some keys, and some doors. Let p holds k mean that person p holds key k. Let k unlocks d mean that key k unlocks door d. Let p opens d mean that person p can open door d. Formalize

(a) Anyone can open any door if they have the appropriate key.
(b) At least one door can be opened by anyone without a key.
(c) The locksmith can open any door even without a key.

After trying the question, scroll down to the solution.
The solutions offered formalize one understanding of the sentences, but not the only reasonable understanding.

(a) Anyone can open any door if they have the appropriate key.
\[\forall p : \text{people} \cdot \forall d : \text{doors} \cdot \forall k : \text{keys} \cdot (p \text{ opens } d) \iff (p \text{ holds } k) \land (k \text{ unlocks } d) \]

(b) At least one door can be opened by anyone without a key.
\[\forall p : \text{people} \cdot (\forall k : \text{keys} \cdot \neg(p \text{ holds } k)) \implies \exists d : \text{doors} \cdot (p \text{ opens } d) \]
But more likely it means that anyone can open at least one door even if they don't have a key.
\[\forall p : \text{people} \cdot \exists d : \text{doors} \cdot (p \text{ opens } d) \]

(c) The locksmith can open any door even without a key.
\[\forall d : \text{doors} \cdot \text{locksmith opens } d \]