In the program
\begin{verbatim}
 chan c: intr c?
\end{verbatim}
(a) add the time spent waiting for input according to the transit time measure.
\begin{verbatim}
 chan c: intr t := t↑(T_r + 1). c?
\end{verbatim}
(b) including the time (from part (a)), rewrite the program without using any programming
notations, and simplify as much as possible.
\begin{verbatim}
 chan c: intr t := t↑(T_r + 1). c?
 = \exists M, T, r, r', w, w': (\forall i, j: nat \ i \leq j \Rightarrow t \leq T_i \leq T_j \leq t') \land r = w = 0
 \land (t := t↑(T_r + 1). \ r := r + 1)
 replace final assignment
 = \exists M, T, r, r', w, w': (\forall i, j: nat \ i \leq j \Rightarrow t \leq T_i \leq T_j \leq t') \land r = w = 0
 \land (t := t↑(T_r + 1). \ r := r + 1 \land w' = w \land t' = t)
 substitution law
 = \exists M, T, r, r', w, w': (\forall i, j: nat \ i \leq j \Rightarrow t \leq T_i \leq T_j \leq t') \land r = w = 0
 \land r' = r + 1 \land w' = w \land t' = t↑(T_r + 1)
 one-point law twice
 = \exists T, r', w'. (\forall i, j: nat \ i \leq j \Rightarrow t \leq T_i \leq T_j \leq t')
 \land r' = 0 + 1 \land w' = 0 \land t' = t↑(T_0 + 1)
 one-point and unused quantifiers
 = \exists T. (\forall i, j: nat \ i \leq j \Rightarrow t \leq T_i \leq T_j \leq t') \land t' = t↑(T_0 + 1)
 = t' \geq t