The compound axiom says
\[x: A, B \equiv x: A \lor x: B \]
There are 16 two-operand binary operators that could sit where \(\lor \) sits in this axiom if we just replace bunch union (,) by a corresponding bunch operator. Which of the 16 two-operand binary operators correspond to useful bunch operators?

§ What is “useful”? It’s not a well-defined question. I suppose any non-degenerate operator is useful (which means it uses both its operands; on the truth table below, if the comment to the right mentions both \(A \) and \(B \) then the operator is not degenerate). One could argue that the degenerate operators are useful for throwing away information, or that they aren’t useful because there is a perfectly good zero-operand or one-operand operator that could be used in their place.

Let \(\setminus A \) be the complement of bunch \(A \) (those elements that are not in \(A \), \(\setminus \) has precedence 2), defined formally by
\[x: \setminus A \equiv \neg x: A \]

\[
\begin{array}{cccc}
T & T & T & T \\
\lor & T & T & T \\
\iff & T & T & T \\
\Rightarrow & T & T & T \\
= & T & T & T \\
\land & T & T & T \\
\oplus & T & T & T \\
\end{array}
\]

\(\text{null} \) (universal bunch)

\(A, B \)

\(A, \setminus B \)

\(\setminus A, B \)

\(\setminus A, \setminus B \)

\(\setminus B \)

\(A \setminus B \)

\(\setminus A \)

\(A \setminus B \)

\(\setminus A \setminus B \)