52 The compound axiom says

 $x: A, B = x: A \lor x: B$

There are 16 two-operand binary operators that could sit where v sits in this axiom if we just replace bunch union (,) by a corresponding bunch operator. Which of the 16 two-operand binary operators correspond to useful bunch operators?

After trying the question, scroll down to the solution.

What is "useful"? It's not a well-defined question. I suppose any non-degenerate operator is useful (which means it uses both its operands; on the theorem table below, if the comment to the right mentions both A and B then the operator is not degenerate). One could argue that the degenerate operators are useful for throwing away information, or that they aren't useful because there is a perfectly good zero-operand or one-operand operator that could be used in their place.

Let A be the complement of bunch A (those elements that are not in A, A has precedence 2), defined formally by r A = -r A

	$x: \forall A \equiv \neg x: A$			
	ΤΤ	Τ⊥	ΤT	
	Т	Т	Т	Т
v	Т	Т	Т	\perp
←	Т	Т	\perp	Т
	Т	Т	\perp	\perp
\Rightarrow	Т	\bot	Т	Т
	Т	\bot	Т	\bot
=	Т	\bot	\bot	Т
٨	Т	\bot	\bot	\bot
		Т	Т	Т
+		Т	Т	\bot
		Т	\bot	Т
		Т	\bot	\bot
		T	Т	Т
		T	Т	\bot
		T	\bot	Т
		T	\bot	\bot
	1			

§