Suppose \(alloc \) allocates 1 unit of memory space and takes time 1 to do so. Then the following computation slowly allocates memory:

\[
\text{GrowSlow} \Leftarrow \text{if } t = 2x \text{ then } alloc \| x := t \text{ else } t := t+1 \text{ fi.
}
\]

GrowSlow

If the time is equal to \(2x \), then one space is allocated, and concurrently \(x \) becomes the time stamp of the allocation; otherwise the clock ticks. The process is repeated forever. Prove that if the space is initially less than the logarithm of the time, and \(x \) is suitably initialized, then at all times the space is less than the logarithm of the time.

§ see book Subsection 9.0.1