49 For naturals \(n \) and \(m \), we can express the statement “\(n \) is a factor of \(m \)” formally as

\[m : n \times \text{nat} \]

(a) What are the factors of \(0 \)?
(b) What is \(0 \) a factor of?
(c) What are the factors of \(1 \)?
(d) What is \(1 \) a factor of?

After trying the question, scroll down to the solution.
(a) What are the factors of 0?
§ For any natural \(n \) we have 0\(\times nat \), so all naturals are factors of 0.

(b) What is 0 a factor of?
§ \(m: 0 \times nat \) requires \(m \) to be 0, so 0 is a factor of only 0.

(c) What are the factors of 1?
§ 1\(\times nat \) requires \(n \) to be 1, so only 1 is a factor of 1.

(d) What is 1 a factor of?
§ For any natural \(m \) we have \(m: 1 \times nat \), so 1 is a factor of all naturals.