
489 We want to find the smallest number in  0,..n  with property  p .  Linear search solves the 
problem.  But evaluating  p  is expensive;  let us say it takes time  1 , and all else is free.  
The fastest solution is to evaluate  p  on all  n  numbers concurrently, and then find the 
smallest number that has the property.  Write a program without concurrency for which 
the sequential to concurrent transformation gives the desired computation.

After trying the question, scroll down to the solution.



§ We introduce array  A: [n*bin] .  We define the desired result  R , invariant  I i , and 
helper specification  P  as follows.

R   =   ¬(∃j: 0,..hʹ· p j) ∧ (p hʹ ∨ hʹ=n)
I i   =   ∀j: 0,..i· A j = p j
P   =   I n ∧ ¬(∃j: 0,..h· p j)  ⇒  R

Now the program is
R   ⇐   I 0⇒Iʹn.  h:= 0.  P
I 0 ⇒ Iʹn   ⇐   for i:= 0;..n do I i ⇒ Iʹ(i+1) od
I i ⇒ Iʹ(i+1)   ⇐   A i:= p i
P   ⇐   if h=n then ok else if A h then ok else h:= h+1.  P f f

The  n  iterations of the  for-loop can be executed concurrently.

We can express the result of the sequential to concurrent transformation at source as 
follows.

R   ⇐   I 0 ⇒ Iʹn.  h:= 0.  P
I 0 ⇒ Iʹn   ⇐   i:= 0.  I i ⇒ Iʹn
I i ⇒ Iʹn   ⇐   if i=n then ok else A i:= p i || (i:= i+1.  I i ⇒ Iʹn) f
P   ⇐   if h=n then ok else if A h then ok else h:= h+1.  P f f

To understand the execution, it might help to unroll the recursion a little:  in the 
refinement of  I i ⇒ Iʹn , replace the recursive call  I i ⇒ Iʹn  by what it calls:

if i=n then ok else A i:= p i || (i:= i+1.  I i ⇒ Iʹn) f
And maybe do the same once more.


