
489 We want to find the smallest number in 0,..n with property p . Linear search solves the
problem. But evaluating p is expensive; let us say it takes time 1 , and all else is free.
The fastest solution is to evaluate p on all n numbers concurrently, and then find the
smallest number that has the property. Write a program without concurrency for which
the sequential to concurrent transformation gives the desired computation.

After trying the question, scroll down to the solution.

§ We introduce array A: [n*bin] . We define the desired result R , invariant I i , and
helper specification P as follows.

R = ¬(∃j: 0,..hʹ· p j) ∧ (p hʹ ∨ hʹ=n)
I i = ∀j: 0,..i· A j = p j
P = I n ∧ ¬(∃j: 0,..h· p j) ⇒ R

Now the program is
R ⇐ I 0⇒Iʹn. h:= 0. P
I 0 ⇒ Iʹn ⇐ for i:= 0;..n do I i ⇒ Iʹ(i+1) od
I i ⇒ Iʹ(i+1) ⇐ A i:= p i
P ⇐ if h=n then ok else if A h then ok else h:= h+1. P f f

The n iterations of the for-loop can be executed concurrently.

We can express the result of the sequential to concurrent transformation at source as
follows.

R ⇐ I 0 ⇒ Iʹn. h:= 0. P
I 0 ⇒ Iʹn ⇐ i:= 0. I i ⇒ Iʹn
I i ⇒ Iʹn ⇐ if i=n then ok else A i:= p i || (i:= i+1. I i ⇒ Iʹn) f
P ⇐ if h=n then ok else if A h then ok else h:= h+1. P f f

To understand the execution, it might help to unroll the recursion a little: in the
refinement of I i ⇒ Iʹn , replace the recursive call I i ⇒ Iʹn by what it calls:

if i=n then ok else A i:= p i || (i:= i+1. I i ⇒ Iʹn) f
And maybe do the same once more.

