We want to find the smallest number in \(0, \ldots, n \) with property \(p \). Linear search solves the problem. But evaluating \(p \) is expensive; let us say it takes time \(1 \), and all else is free. The fastest solution is to evaluate \(p \) on all \(n \) numbers concurrently, and then find the smallest number that has the property. Write a program without concurrency for which the sequential to concurrent transformation gives the desired computation.

§ We introduce array \(A : [n*bin] \). We define the desired result \(R \), invariant \(I \), and helper specification \(P \) as follows.

\[
R = \neg (\exists j : 0, \ldots, h \cdot p j) \land (p h \lor h = n) \\
I = \forall j : 0, \ldots, i \cdot A j = p j \\
P = I n \land \neg (\exists j : 0, \ldots, h \cdot p j) \Rightarrow R
\]

Now the program is

\[
R \iff 10 \Rightarrow \text{for } i = 0, \ldots, n \text{ do } I i \Rightarrow I (i+1) \text{ od} \\
I i \Rightarrow I (i+1) \iff A i = p i \\
P \iff \text{if } h = n \text{ then ok else if } A h \text{ then ok else } h := h + 1 \text{. P fi fi}
\]

The \(n \) iterations of the \textbf{for}-loop can be executed concurrently.

We can express the result of the sequential to concurrent transformation at source as follows.

\[
R \iff 10 \Rightarrow \text{for } i = 0, \ldots, n \text{ do } I i \Rightarrow I (i+1) \text{ od} \\
I i \Rightarrow I (i+1) \iff \text{if } i = n \text{ then ok else if } A i := p i \parallel (i := i + 1. I i \Rightarrow I (i+1)) \text{ fi} \\
P \iff \text{if } h = n \text{ then ok else if } A h \text{ then ok else } h := h + 1 \text{. P fi fi}
\]

To understand the execution, it might help to unroll the recursion a little: in the refinement of \(I i \Rightarrow I (i+1) \), replace the recursive call \(I i \Rightarrow I (i+1) \) by what it calls:

\[
\text{if } i = n \text{ then ok else if } A i := p i \parallel (i := i + 1. I i \Rightarrow I (i+1)) \text{ fi}
\]

And maybe do the same once more.