We want to find the smallest number in $0..n$ with property p. Linear search solves the problem. But evaluating p is expensive; let us say it takes time 1, and all else is free. The fastest solution is to evaluate p on all n numbers concurrently, and then find the smallest number that has the property. Write a program without concurrency for which the sequential to concurrent transformation gives the desired computation.

§

We introduce array $A: [n*bin]$. We define the desired result R, condition I_i, and helper specification P as follows.

$$
R = \neg(\exists j: 0..h'::p j) \land (p h' \lor h'=n)
$$

$$
I_i = \forall j: 0..i:: A j = p j
$$

$$
P = I n \land \neg(\exists j: 0..h::p j) \Rightarrow R
$$

Now the program is

$$
R \leftarrow I_0 \Rightarrow I' n. h:=0. P
$$

$I_0 \Rightarrow I' n \leftarrow \text{for } i:=0..n \text{ do } I_i \Rightarrow I'(i+1) \text{ od}
$$

$I_i \Rightarrow I'(i+1) \leftarrow A i:= p i
$$

$P \leftarrow \text{if } h=n \text{ then ok else if } A h \text{ then ok else } h:= h+1. \text{ P fi fi}$

The n iterations of the for-loop can be executed concurrently.

We can express the result of the sequential to concurrent transformation at source as follows.

$$
R \leftarrow I_0 \Rightarrow I' n. h:=0. P
$$

$I_0 \Rightarrow I' n \leftarrow i:=0. I_i \Rightarrow I' n
$$

$I_i \Rightarrow I' n \leftarrow \text{if } i=n \text{ then ok else if } A i:= p i \parallel (i:= i+1. I_i \Rightarrow I' n) \text{ fi}
$$

$P \leftarrow \text{if } h=n \text{ then ok else if } A h \text{ then ok else } h:= h+1. \text{ P fi fi}$

To understand the execution, it might help to unroll the recursion a little: in the refinement of $I_i \Rightarrow I' n$, replace the recursive call $I_i \Rightarrow I' n$ by what it calls:

$$
\text{if } i=n \text{ then ok else if } A i:= p i \parallel (i:= i+1. I_i \Rightarrow I' n) \text{ fi}
$$

And maybe do the same once more.