An implementer's variable A holds a binary tree representation as follows. If the tree is empty, $A = [\text{nil}]$. If the tree has left subtree L and right subtree R and root value n, then $A = [L; n; R]$. The tree

![Binary Tree Diagram]

is represented as $A = [[[\text{nil}]; 2; [[\text{nil}]; 5; [\text{nil}]]]; 3; [[\text{nil}]; 7; [\text{nil}]]]$. The tree must be reimplemented using implementer's variable B as follows. If the tree is empty, $B = 0$. If the tree has left subtree L and right subtree R and root value n, then

$$B = \text{"left"}\rightarrow L \mid \text{"root"}\rightarrow n \mid \text{"right"}\rightarrow R$$

The same example tree is represented as

$$B = \begin{array}{l}
\text{"left"} \rightarrow (\text{"left"} \rightarrow 0 \\
\quad \text{"root"} \rightarrow 2 \\
\quad \text{"right"} \rightarrow (\text{"left"} \rightarrow 0 \\
\quad \quad \quad \text{"root"} \rightarrow 5 \\
\quad \quad \quad \text{"right"} \rightarrow 0)) \\
\quad \text{"root"} \rightarrow 3 \\
\quad \text{"right"} \rightarrow (\text{"left"} \rightarrow 0 \\
\quad \quad \quad \text{"root"} \rightarrow 7 \\
\quad \quad \quad \text{"right"} \rightarrow 0)
\end{array}$$

(a) What is the data transformer?

(b) A user has natural variable n and the operation

$$\text{root} \equiv n := A \ 1$$

which assigns to n the root value. Use your transformer from part (a) to transform root.

no solution given