Let \otimes be a two-operand infix operator (precedence 3) with natural operands and an extended natural result. Informally, $n \otimes m$ means “the number of times that n is a factor of m”. It is defined by the following two axioms.

- $m: n \times \text{nat} \lor n \otimes m = 0$
- $n \neq 0 \Rightarrow n \otimes (m \times n) = n \otimes m + 1$

(a) Make a 3×3 chart of the values of $(0,..3) \otimes (0,..3)$.
(b) Show that the axioms become inconsistent if the antecedent of the second axiom is removed.
(c) How should we change the axioms to allow \otimes to have extended natural operands?

After trying the question, scroll down to the solution.
(a) Make a 3×3 chart of the values of $(0,..3) \otimes (0,..3)$.

\[
\begin{array}{c|ccc}
0 & 0 & 0 \\
1 & \infty & \infty & \infty \\
2 & \infty & 0 & 1 \\
\end{array}
\]

(b) Show that the axioms become inconsistent if the antecedent of the second axiom is removed.

\[
0 \otimes 0 = 0 \otimes (1 \times 0) = 0 \otimes 1 + 1 = 0 + 1 = 1 \\
0 \otimes 0 = 0 \otimes (0 \times 0) = 0 \otimes 0 + 1
\]

Hence $1 = 1 + 1$.

(c) How should we change the axioms to allow \otimes to have extended natural operands?

From the first axiom, instantiating with $m=\infty$ and $n=1$, we get

\[
\infty \times 1 \times \text{nat} \lor 1 \otimes \infty = 0 \\
\equiv \quad \bot \lor 1 \otimes \infty = 0 \\
\equiv \quad 1 \otimes \infty = 0
\]

From the second axiom, instantiating with $m=\infty$ and $n=1$, we get

\[
1 + 0 \Rightarrow 1 \otimes (\infty \times 1) = 1 \otimes \infty + 1 \\
\equiv \quad 1 \otimes \infty = 1 \otimes \infty + 1
\]

now use what we got from the first axiom

\[
\equiv \quad 0 = 0 + 1
\]

So we can't leave the axioms as they are. We can change nat to xnat in the first axiom; now for $n + 0$ we have $n \otimes \infty = \infty$. Perhaps we don't want $\infty \otimes \infty = \infty$, so perhaps we should weaken the second axioms to $0 < n < \infty \Rightarrow n \otimes (m \times n) = n \otimes m + 1$. We now have no answer for $\infty \otimes m$, and I don't know what it should be.