Here are two definitions.

\[\begin{align*}
A & = \text{if } \sqrt{c} \land \sqrt{d} \text{ then } c \lor d \\text{?} \\
& \quad \text{else if } \sqrt{c} \text{ then } c \? \\
& \quad \text{else if } \sqrt{d} \text{ then } d \? \\
& \quad \text{else if } Tc_{rc} <Td_{rd} \text{ then } t := Tc_{rc} + 1. \? \\
& \quad \text{else if } Td_{rd} <Tc_{rc} \text{ then } t := Td_{rd} + 1. \? \\
& \quad \text{else } t := Tc_{rc} + 1. \? \\
B & = \text{if } \sqrt{c} \land \sqrt{d} \text{ then } c \lor d \? \\
& \quad \text{else if } \sqrt{c} \text{ then } c \? \\
& \quad \text{else if } \sqrt{d} \text{ then } d \? \\
& \quad \text{else } t := t + 1. \? \\
\end{align*} \]

Letting time be an extended integer, prove \(A = B \) .