Let \(n \) be a natural constant. Let \(S: n^* nat \) be an implementer's variable. It is being reimplemented by \(R: n^* nat \) representing the same \(n \) naturals but in the reverse order.

(a) What is the data transformer?
(b) A user has variable \(i: nat \) and the operation

\[
\text{get } \equiv \ i := S_i
\]

Use your transformer from part (a) to transform \(\text{get} \).

After trying the question, scroll down to the solution.
It is convenient to define the “reverse” operator \(\leftrightarrow \). For any string \(S \), define \(\leftarrow S \) to be the reverse of \(S \). Formally, if \(n = \leftrightarrow S \),
\[
\forall j: 0., n
S_j = (\leftarrow S)_{n-j-1}
\]
and equivalently
\[
\forall j: 0., n
(\leftarrow S)_j = S_{n-j-1}
\]
and we can prove \(\leftarrow \) is its own inverse
\[
\leftarrow \leftarrow S = S
\]

(a) What is the data transformer?

\[
D = R = \leftarrow S
\]
or equivalently
\[
D = S = \leftarrow R
\]

(b) A user has variable \(i: \text{nat} \) and the operation
\[
\text{get} = i := S_i
\]
Use your transformer from part (a) to transform \(\text{get} \).

\[
\forall S: D \Rightarrow \exists S': D' \land \text{get}
\]
\[
\equiv \forall S: S = \leftarrow R \Rightarrow \exists S': S' = \leftarrow R' \land (i := S_i) \quad \text{expand assignment in the old variable}
\]
\[
\equiv \forall S: S = \leftarrow R \Rightarrow \exists S': S' = \leftarrow R' \land i' = S_i \land S' = S \quad \text{one-point}
\]
\[
\equiv \forall S: S = \leftarrow R \Rightarrow i' = S_i \land \leftarrow R' = S \quad \text{one-point}
\]
\[
\equiv i' = (\leftarrow R)_i \land \leftarrow R' = \leftarrow R \quad \leftarrow \text{ is self-inverse}
\]
\[
\equiv i' = R_{n-i-1} \land R' = R \quad \text{contract assignment in the new variable}
\]
\[
\equiv i := R_{n-i-1}
\]