Let \(a \), \(b \), and \(x \) be natural variables. Variables \(a \) and \(b \) are implementer's variables, and \(x \) is a user's variable for the operations

\[
\begin{align*}
\text{start} & \equiv a := 0. \quad b := 0 \\
\text{step} & \equiv a := a + 1. \quad b := b + 2 \\
\text{ask} & \equiv x := a + b
\end{align*}
\]

Reimplement this theory replacing the two old implementer's variables \(a \) and \(b \) with one new natural implementer's variable \(c \).

(a) What is the data transformer?

(b) Using your data transformer, transform \(\text{step} \).

After trying the question, scroll down to the solution.
(a) What is the data transformer?
§
c = a + b

(b) Using your data transformer, transform step.
§
∀a, b · c = a+b ⇒ ∃a’, b’ · c’ = a’+b’ ∧ (a:= a+1. b:= b+2) replace program
≡ ∀a, b · c = a+b ⇒ ∃a’, b’ · c’ = a’+b’ ∧ a’ = a+1 ∧ b’ = b+2 ∧ x’=x one-point
≡ ∀a, b · c = a+b ⇒ c’ = a+1+b+2 ∧ x’=x
≡ ∀a, b · c = a+b ⇒ c’ = a+b+3 ∧ x’=x one-point for b
≡ ∀a · c’ = a+c−a+3 ∧ x’=x
≡ ∀a’ · c’ = c+3 ∧ x’=x
≡ c’ = c+3 ∧ x’=x
≡ c:= c+3