
455 A theory provides three names: set , flip , and ask . It is presented by an
implementation. Let u: bin be the user's variable, and let v: bin be the implementer's
variable. The axioms are

set = v:= ⊤
flip = v:= ¬v
ask = u:= v

(a)√ Replace v with w: nat according to the data transformer v = even w .
(b) Replace v with w: nat according to the data transformer (w=0 ⇒ v) ∧ (w=1 ⇒ ¬v) . Is

anything wrong?
(c) Replace v with w: nat according to (v ⇒ w=0) ∧ (¬v ⇒ w=1) . Is anything wrong?

After trying the question, scroll down to the solution.

(a)√ Replace v with w: nat according to the data transformer v = even w .
§ see book Section 7.2

(b) Replace v with w: nat according to the data transformer (w=0 ⇒ v) ∧ (w=1 ⇒ ¬v) . Is
anything wrong?

§ Operation set becomes
∀v· (w=0 ⇒ v) ∧ (w=1 ⇒ ¬v) ⇒ ∃vʹ· (wʹ=0 ⇒ vʹ) ∧ (wʹ=1 ⇒ ¬vʹ) ∧ (v:= ⊤)

= uʹ=u ∧ wʹ⧧1
Operation flip becomes

∀v· (w=0 ⇒ v) ∧ (w=1 ⇒ ¬v) ⇒ ∃vʹ· (wʹ=0 ⇒ vʹ) ∧ (wʹ=1 ⇒ ¬vʹ) ∧ (v:= ¬v)
= uʹ=u ∧ (w⧧0 ⇒ wʹ⧧1) ∧ (w⧧1 ⇒ wʹ⧧0)
Operation ask becomes

∀v· (w=0 ⇒ v) ∧ (w=1 ⇒ ¬v) ⇒ ∃vʹ· (wʹ=0 ⇒ vʹ) ∧ (wʹ=1 ⇒ ¬vʹ) ∧ (u:= v)
= (w⧧0 ⇒ wʹ⧧0 ∧ ¬uʹ) ∧ (w⧧1 ⇒ wʹ⧧1 ∧ uʹ)
= (w=0 ∧ wʹ⧧1 ∧ uʹ) ∨ (w=1 ∧ wʹ⧧0 ∧ ¬uʹ)
Something is wrong. Although (w=0 ⇒ v) ∧ (w=1 ⇒ ¬v) is a data transformer, it is a
rather weak one because when w is neither 0 nor 1 it doesn't constrain v . So the
result is that ask is transformed into something that's unimplementable.

(c) Replace v with w: nat according to (v ⇒ w=0) ∧ (¬v ⇒ w=1) . Is anything wrong?
§ Operation set becomes

∀v· (v ⇒ w=0) ∧ (¬v ⇒ w=1) ⇒ ∃vʹ· (vʹ ⇒ wʹ=0) ∧ (¬vʹ ⇒ wʹ=1) ∧ (v:= ⊤)
= w: 0,1 ⇒ (w:= 0)
Operation flip becomes

∀v· (v ⇒ w=0) ∧ (¬v ⇒ w=1) ⇒ ∃vʹ· (vʹ ⇒ wʹ=0) ∧ (¬vʹ ⇒ wʹ=1) ∧ (v:= ¬v)
= w: 0,1 ⇒ (w:= 1–w)
Operation ask becomes

∀v· (v ⇒ w=0) ∧ (¬v ⇒ w=1) ⇒ ∃vʹ· (vʹ ⇒ wʹ=0) ∧ (¬vʹ ⇒ wʹ=1) ∧ (u:= v)
= w: 0,1 ⇒ (u:= w=0)
Something is wrong. We have been transforming with something that isn't a transformer;
it's too strong.

∀w· ∃v· (v ⇒ w=0) ∧ (¬v ⇒ w=1)
= ∀w· w=0 ∨ w=1
= ⊥
The last line isn't a theorem, so neither is the first. Nothing constrains the implementation
to start in a state where w=0 ∨ w=1 . If it starts with w=2 , then set might not set w to
0 , after which ask will give the wrong answer.

