A program list is a list with an associated index, and the following operations: item gives the value of the indexed item; set \(x \) changes the value of the indexed item to \(x \); goLeft moves the index one item to the left; goRight moves the index one item to the right.

(a) Design axioms for a doubly infinite program list.

Let \(L \) mean that all items to the left of the indexed item remain the same.

Let \(R \) mean that all items to the right of the indexed item remain the same.

\[
\begin{align*}
ok &= L \land item' = item \land R = goLeft. goRight = goRight. goLeft \\
set x &= L \land item' = x \land R \\
goLeft. L \land item' = item &= L. goLeft \\
goRight. item' = item \land R &= R. goRight \\
L. L &= L \\
R. R &= R
\end{align*}
\]

(b) Using your theory from part (a), prove

\[
\begin{align*}
goLeft. set 3. goRight. set 4. goLeft & \implies item' = 3 \\
& \equiv goLeft. L \land item' = 3 \land R. goRight. L \land item' = 4 \land R. goLeft \\
& \implies goLeft. item' = 3. goRight. L. goLeft \\
& \equiv goLeft. item' = 3. goRight. goLeft. L \land item' = item \\
& \equiv goLeft. item' = 3. goRight. goLeft. item' = item \\
& \equiv item' = 3 \quad \text{definition of sequential composition twice}
\end{align*}
\]