We want to find the smallest number in \(0,..n \) with property \(p \). Linear search solves the problem. But evaluating \(p \) is expensive; let us say it takes time \(1 \), and all else is free. The fastest solution is to evaluate \(p \) on all \(n \) numbers concurrently, and then find the smallest number that has the property. Write a program without concurrency for which the sequential to parallel transformation gives the desired computation.

§ We introduce array \(A: [n*bin] \). We define the desired result \(R \), condition \(I_i \), and helper specification \(P \) as follows.

\[
R = \neg (\exists j: 0,..h' \cdot pj) \land (ph' \lor h'=n) \\
I_i = \forall j: 0,..i \cdot Aj=pj \\
P = In \land \neg (\exists j: 0,..h' \cdot pj) \Rightarrow R
\]

Now the program is

\[
R \leftarrow I_0 \Rightarrow I'n. \ h:= 0. \ P \\
I_0 \Rightarrow I'n \leftarrow \text{for } i:= 0,..n \text{ do } I_i \Rightarrow I'(i+1) \text{ od} \\
I_i \Rightarrow I'(i+1) \leftarrow \text{Ai:= pi} \\
P \leftarrow \text{if } h=n \text{ then ok else if } Ah \text{ then ok else } h:= h+1. \ P \text{ fi fi}
\]

The \(n \) iterations of the \(\text{for} \)-loop can be executed in parallel.

We can express the result of the sequential to parallel transformation at source as follows.

\[
R \leftarrow I_0 \Rightarrow I'n. \ h:= 0. \ P \\
I_0 \Rightarrow I'n \leftarrow i:= 0. \ I_i \Rightarrow I'n \\
I_i \Rightarrow I'n \leftarrow \text{if } i=n \text{ then ok else } Ai:= pi \parallel (i:= i+1. \ I_i \Rightarrow I'n) \text{ fi} \\
P \leftarrow \text{if } h=n \text{ then ok else if } Ah \text{ then ok else } h:= h+1. \ P \text{ fi fi}
\]

To understand the execution, it might help to unroll the recursion a little: in the refinement of \(I_i \Rightarrow I'n \), replace the recursive call \(I_i \Rightarrow I'n \) by what's called \(\text{if } i=n \text{ then ok else } Ai:= pi \parallel (i:= i+1. \ I_i \Rightarrow I'n) \text{ fi} \). And maybe do the same once more.