Design axioms for a circular list. There should be operations to create an empty list, to move along one position in the list (the first item comes after the last, in circular fashion), to insert an item at the current position, to delete the current item, and to give the current item.

Let the type of items in the list be X. I introduce two implementer's variables. Let L be a list of items of type X, and let i be an index of L. The theory introduces six names.

- new a program that makes an empty list
- mvr a program that moves right one position in the list
- mvl a program that moves left one position in the list
- ins a program with parameter x that inserts x into the list at the current position
- del a program that deletes the item at the current position
- val the value of the item at the current position

Using nat for X, here is an example list and current position in the list.

$L = [5, 7, 1, 8, 6]$

With this list and current position, $val = 1$ and del deletes the 1. When the current position is $#L - 1$ (arrow under the last ;), mvr makes it 0 (under []). When the current position is 0 (arrow under []), mvl makes it $#L - 1$ (under the last ;). For an empty list and a one-item list, the only possible current position is 0. I think the clearest and easiest way to present the axioms might be to implement them.

- $new = L := [nil]$
- $mvr = if #L = 0 \lor i = #L - 1 \text{ then } i := 0 \text{ else } i := i + 1 \text{ fi}$
- $mvl = if #L = 0 \text{ then } i := 0 \text{ else if } i = 0 \text{ then } i := #L - 1 \text{ else } i := i - 1 \text{ fi fi}$
- $ins = \langle x : X \rightarrow L := L[0 ;..; i] ;; [x] ;; L[i + 1 ;..; #L] \rangle$
- $del = L := L[0 ;..; i] ;; L[i + 1 ;..; #L]$
- $val = L i$

If the list is empty, then del and val are undefined. We could strengthen the theory by defining them. Maybe we should add

- emp a binary saying whether the list is empty

and define it as

- $emp = #L = 0$

so the programmer can test whether the list is empty before using val and del. If we do add it, we can simplify mvr and mvl

- $mvr = if i = #L - 1 \text{ then } i := 0 \text{ else } i := i + 1 \text{ fi}$
- $mvl = if i = 0 \text{ then } i := #L - 1 \text{ else } i := i - 1 \text{ fi}$

because the programmer can test whether the list is empty before using mvr and mvl.