(disjoint composition) Independent composition \(P \langle Q \rangle \) requires that \(P \) and \(Q \) have no variables in common, although each can make use of the initial values of the other's variables by making a private copy. An alternative, let's say disjoint composition, is to allow both \(P \) and \(Q \) to use all the variables with no restrictions, and then to choose disjoint sets of variables \(v \) and \(w \) and define
\[
P \langle v \rangle \langle w \rangle | Q = (P. \ v' = v) \land (Q. \ w' = w)
\]

(a) Describe how \(P \langle v \rangle \langle w \rangle | Q \) can be executed.

§ Make a copy of all variables. Execute \(P \) using the original set of variables and in parallel execute \(Q \) using the copies. Then copy back from the copy \(w \) to the original \(w \). Then throw away the copies. There may be variables \(x \) other than \(v \) and \(w \); if so, their final values are arbitrary, and this implementation makes them be what \(P \) says they should be. Formally, using application \(\langle v \rightarrow P \rangle \) as the formal notation for (substitute \(x \) for \(v \) in \(P \)),
\[
\begin{align*}
\text{var } &cw:= w' \text{ var } cv:= v' \text{ var } cx:= x' \\
&\quad (P \| \langle v, w, x, v', w', x' \rightarrow Q \rangle cv cx cv' cx').
\end{align*}
\]

(b) Prove that if \(P \) and \(Q \) are implementable specifications, then \(P \langle v \rangle \langle w \rangle | Q \) is implementable.

§ First, a lemma.
\[
P, \ v' = v \quad \text{expand dependent composition}
\]

\[
\begin{align*}
&= \exists v'', w'', x''. \langle v', w', x' \rightarrow P \rangle v'' w'' x'' \land v'' = v'' \\
&= \exists w'', x''. \langle v', w', x' \rightarrow P \rangle v' w' x'' \\
&= \exists w', x'. \langle v', w', x' \rightarrow P \rangle v' w' x' \\
&= \exists w', x'. P
\end{align*}
\]

So \(P \langle v \rangle \langle w \rangle | Q = (P. \ v' = v) \land (Q. \ w' = w) = (\exists w', x'. P) \land (\exists v', x'. Q) \)

Now the main proof.
\[
(P \langle v \rangle \langle w \rangle | Q \text{ is implementable}) \quad \text{definition of implementable}
\]

\[
\begin{align*}
&= \forall v, w, x. \exists v', w', x'. P \langle v \rangle \langle w \rangle | Q \\
&= \forall v, w, x. \exists v'. \exists w', x'. (\exists w', x'. P) \land (\exists v', x'. Q) \\
&= \forall v, w, x. \exists v'. \exists w'. \exists x'. (\exists w', x'. P) \land (\exists v', x'. Q) \\
&= \forall v, w, x. \exists v'. \exists w'. (\exists v', x'. Q) \land (\exists w', x'. P) \\
&= \forall v, w, x. (\exists v', x'. Q) \land (\exists w', x'. P) \\
&= \forall v, w, x. (\exists v', w, x'. P) \land (\exists v', x'. Q) \\
&= (\exists v, w, x. \exists v', w, x'. P) \land (\exists v, w, x. \exists v', x'. Q) \\
&= (P \text{ is implementable}) \land (Q \text{ is implementable})
\end{align*}
\]