We defined bunch \textit{null} with the axiom \textit{null: A}. Is there any harm in defining bunch \textit{all} with the axiom \textit{A: all}?

After trying the question, scroll down to the solution.
§ With just Binary Theory, Number Theory, Character Theory, and Bunch Theory, there is no harm (inconsistency) in defining \textit{all} with the axiom \textit{A}: \textit{all}. Even when we add Set Theory (in this book; we don't yet have set comprehension) there is no harm. But when we add Function Theory, specifically the \textit{§} quantifier, we have an inconsistency known as “Russell's Paradox”. Let 
\[ R = \{ s: \forall s \rightarrow s \in s \} \]
Then \( R \) is the set of all sets that are not members of themselves. Or, without abbreviation,
\[ R = \{ \{ s: \forall s \rightarrow s \in s \} \} \]
Then
\[
\begin{align*}
R & \in R \\
\equiv & \quad R \in \{ s: \forall s \rightarrow s \in s \} \\
\equiv & \quad R: \forall s: \forall s \rightarrow s \in s \\
\equiv & \quad R: \forall s \wedge \neg R \in R \\
\equiv & \quad \{ s: \forall s \rightarrow s \in s \}: \forall s \wedge \neg R \in R \\
\equiv & \quad ( \forall s: \forall s \rightarrow s \in s ): \forall s \wedge \neg R \in R \\
\equiv & \quad \top \wedge \neg R \in R \\
\equiv & \quad \neg R \in R
\end{align*}
\]
and we have inconsistency.

It might be nice to have \textit{all}, and to weaken the solution law to accommodate it. But I have stayed with standard mathematics, excluding \textit{all} and including the strong form of solution law.

Even without \textit{all}, we still have a benign form of Russell's Paradox (Exercise 48); it is not an inconsistency, but it may disturb some people.