The slip data structure introduces the name \textit{slip} with the following axioms:

\[
\text{slip} = \left[X; \text{slip} \right] \\
B = \left[X; B \right] \Rightarrow B; \text{slip}
\]

where \(X\) is some given type. Can you implement it?

That second axiom is not induction; it is coinduction, defining \textit{slip} to be the largest solution of the construction axiom. (If it were induction, the two axioms would define \textit{slip} to be \textit{null}.) If lists and recursive definition are implemented, as they are in some “lazy functional” languages like LazyML and Haskell, then \textit{slip} is already implemented by the first axiom. It's strange because the recursion doesn't seem to have a base, so \textit{slip} is an infinite structure:

\[
\text{slip} = \left[X; \left[X; \left[X; \ldots \right] \right] \right] \\
\]

In C we have to use pointers.

\[
\textbf{struct} \quad \textit{slip} \{ X \leftarrow \textit{left}; \ \textit{slip} \leftarrow \textit{right} \};
\]

Although recursive data types are seldom implemented, recursive functions usually are implemented. (This is a strange inconsistency in the design of programming languages; the reasons for recursion and the implementation of recursion are exactly the same for data types as for functions and procedures.) We can define

\[
\text{slip} = 0 \rightarrow X \mid 1 \rightarrow \text{slip}
\]

or

\[
\text{slip} = \langle n: 0, 1 \rightarrow \textbf{if} \ n = 0 \ \textbf{then} \ X \ \textbf{else} \ \text{slip} \ \textbf{fi} \rangle
\]

This function definition will be a problem in a language that wants you to state the result type. The number of further arguments depends on the values of previous arguments.