A theory provides three names: \(set \), \(flip \), and \(ask \). It is presented by an implementation. Let \(u: bin \) be the user's variable, and let \(v: bin \) be the implementer's variable. The axioms are:

\[
\begin{align*}
set & \equiv v := T \\
flip & \equiv v := \neg v \\
ask & \equiv u := v
\end{align*}
\]

(a) Replace \(v \) with \(w: nat \) according to the data transformer \(v = even w \).

(b) Replace \(v \) with \(w: nat \) according to the data transformer \((w=0 \Rightarrow v) \land (w=1 \Rightarrow \neg v) \). Is anything wrong?

\[
\text{Operation } set \text{ becomes } \\
\forall v \cdot (w=0 \Rightarrow v) \land (w=1 \Rightarrow \neg v) \Rightarrow \exists v': (w'=0 \Rightarrow v') \land (w'=1 \Rightarrow \neg v') \land (v'=T) \\
= u'=u \land w'+1
\]

Operation \(flip \) becomes

\[
\forall v \cdot (w=0 \Rightarrow v) \land (w=1 \Rightarrow \neg v) \Rightarrow \exists v': (w'=0 \Rightarrow v') \land (w'=1 \Rightarrow \neg v') \land (v'=v) \\
= u'=u \land (w'+0 \Rightarrow w'+1 \land (v'=w+1 \Rightarrow u'))
\]

Operation \(ask \) becomes

\[
\forall v \cdot (w=0 \Rightarrow v) \land (w=1 \Rightarrow \neg v) \Rightarrow \exists v': (w'=0 \Rightarrow v') \land (w'=1 \Rightarrow \neg v') \land (u'=u) \\
= (w=0 \land w'+1 \land u') \lor (w=1 \land w'+0 \land \neg u')
\]

Something is wrong. Although \((w=0 \Rightarrow v) \land (w=1 \Rightarrow \neg v) \) is a data transformer, it is a rather weak one because when \(w \) is neither 0 nor 1 it doesn't constrain \(v \). So the result is that \(ask \) is transformed into something that's unimplementable.

(c) Replace \(v \) with \(w: nat \) according to \((v \Rightarrow w=0) \land (\neg v \Rightarrow w=1) \). Is anything wrong?

\[
\text{Operation } set \text{ becomes } \\
\forall v \cdot w=0 \land (\neg v \Rightarrow w=1) \Rightarrow \exists v': (v' \Rightarrow w'=0) \land (\neg v' \Rightarrow w'=1) \land (v'=T) \\
= w=0 \land 1 \Rightarrow (w'=0)
\]

Operation \(flip \) becomes

\[
\forall v \cdot (v \Rightarrow w=0) \land (\neg v \Rightarrow w=1) \Rightarrow \exists v': (v' \Rightarrow w'=0) \land (\neg v' \Rightarrow w'=1) \land (v'=v) \\
= w=0 \land 1 \Rightarrow (u'=w)
\]

Operation \(ask \) becomes

\[
\forall v \cdot (v \Rightarrow w=0) \land (\neg v \Rightarrow w=1) \Rightarrow \exists v': (v' \Rightarrow w'=0) \land (\neg v' \Rightarrow w'=1) \land (u'=v) \\
= w=0 \land 1 \Rightarrow (u'=w)
\]

Something is wrong. We have been transforming with something that isn't a transformer; it's too strong.

\[
\forall w \cdot \exists v \cdot (v \Rightarrow w=0) \land (\neg v \Rightarrow w=1) \\
= \forall w \cdot w=0 \lor w=1 \\
= \bot
\]

The last line isn't a theorem, so neither is the first. Nothing constrains the implementation to start in a state where \(w=0 \land v=1 \). If it starts with \(w=2 \), then \(set \) might not set \(w \) to 0, after which \(ask \) will give the wrong answer.