An insertion list is a data structure similar to a list, but with an associated insertion point.

\[\ldots; 4; 7; 1; 0; 3; 8; 9; 2; 5; \ldots \]

\[\uparrow \]

insertion point

insert puts an item at the insertion point (between two existing items), leaving the insertion point at its right. *erase* removes the item to the left of the insertion point, closing up the list. *item* gives the item to the left of the insertion point. *forward* moves the insertion point one item to the right. *back* moves the insertion point one item to the left.

(a) Design axioms for a doubly-infinite data-insertion list.

(b) Design axioms for a doubly-infinite program-insertion list.

§ Here is a weak theory.

\[
\begin{align*}
\text{item}'=x & \iff \text{insert } x \\
\text{item}'=\text{item} & \iff F \lor (\text{back}.B.\text{forward}) \\
\text{forward}.\text{back} = \text{back}.\text{forward} & = \text{ok} \\
F & \iff \text{ok} \lor (\exists x \cdot \text{insert } x) \lor \text{forward}.F.\text{erase} \lor \text{back} \lor (F.F) \\
B & \iff \text{ok} \lor (\exists x \cdot \text{insert } x) \lor \text{erase} \lor (\text{back}.B.\text{forward}) \lor (B.B)
\end{align*}
\]

Here is a strong theory.

\[
\begin{align*}
\text{ok} & = F \land B = \text{forward}.\text{back} = \text{back}.\text{forward} = \text{insert } x.\text{erase} \\
\text{insert } x & = (\text{back}.F) \land \text{item}'=x \land B \\
F & = \text{ok} \lor (\exists x \cdot \text{insert } x) \lor \text{forward}.F.\text{erase} \lor \text{back} \lor (F.F) \\
B & = \text{ok} \lor (\exists x \cdot \text{insert } x) \lor \text{erase} \lor (\text{back}.B.\text{forward}) \lor (B.B)
\end{align*}
\]

(c) Design axioms for a finite data-insertion list.

(d) Design axioms for a finite program-insertion list.