4.3 You are given a predicate \(\text{prime} \) with domain \(\text{nat} \) such that \(\text{prime} \ n \) is \(\top \) if \(n \) is a prime number, and \(\bot \) if it is not. You are given natural variable \(n \). Write a program to assign to \(n \) the smallest prime number that is bigger than or equal to the initial value of \(n \). Write all specifications and refinements necessary to prove your program is correct, but you do not need to write the proof. You may ignore time.

\[P \text{ be the specification } n' \geq n \land \text{prime} \ n' \land \neg \exists i: n..n' \cdot \text{prime} \ i. \]

\[P \iff \text{if prime n then ok else n:= n+1. } \]