The slip data structure introduces the name \textit{slip} with the following axioms:

\[
\text{slip} = [X; \text{slip}]
\]

\[
B = [X; B] \Rightarrow B: \text{slip}
\]

where \(X \) is some given type. Can you implement it?

That second axiom is not induction; it is coinduction, defining \textit{slip} to be the largest solution of the construction axiom. (If it were induction, the two axioms would define \textit{slip} to be \textit{null}.) If lists and recursive definition are implemented, as they are in some “lazy functional” languages like LazyML and Haskell, then \textit{slip} is already implemented by the first axiom. It's strange because the recursion doesn't seem to have a base, so \textit{slip} is an infinite structure:

\[
\text{slip} = [X; [X; [X; \ldots]]]
\]

In C we have to use pointers.

\begin{verbatim}
struct slip { X left; slip *right; };
\end{verbatim}

Although recursive data types are seldom implemented, recursive functions usually are implemented. (This is a strange inconsistency in the design of programming languages; the reasons for recursion and the implementation of recursion are exactly the same for data types as for functions and procedures.) We can define

\[
\text{slip} = 0 \rightarrow X \mid 1 \rightarrow \text{slip}
\]

or

\[
\text{slip} = \langle n: 0,1 \rightarrow \text{if } n=0 \text{ then } X \text{ else } \text{slip} \rangle
\]

This function definition will be a problem in a language that wants you to state the result type. The number of further arguments depends on the values of previous arguments.