Bunch \textit{this} is defined by the construction and induction axioms
\begin{align*}
2 \times \textit{this} &: \textit{this} \\
2 \times \text{B} &: \textit{this}: \text{B}
\end{align*}
Bunch \textit{that} is defined by the construction and induction axioms
\begin{align*}
2 \times \text{that} &: \text{that} \\
2 \times \text{B} &: \text{that}: \text{B}
\end{align*}
Prove \textit{this} = \text{that}.

§ Recursive construction for \textit{this} produces
\textit{this}_n = 2^{(0,..n)+1}
So \textit{this}_\infty = 2^{\text{nat}+1} and it satisfies both construction and induction for \textit{this}.
Hence \textit{this} = 2^{\text{nat}+1}.

Recursive construction for \textit{that} produces
\textit{that}_n = 2^{(0,..2^n)+1} (I can't do 4 levels typographically)
So \textit{that}_\infty = 2^{(0,..2^\infty)+1}. I just need \textit{2}^\infty = \infty to say \textit{that}_\infty = 2^{\text{nat}+1}. But even without it, I can check whether \textit{2}^{\text{nat}+1} satisfies both construction and induction for \textit{that}, and I find that it does, so \textit{that} = 2^{\text{nat}+1}.
Therefore \textit{this}=\text{that}.