- 382 Function f is called monotonic if $\forall i, j: \Box f : i \le j \Rightarrow f i \le f j$.
- (a) Prove f is monotonic if and only if $\forall i, j \in f : i < f : j \Rightarrow i < j$.
- (b) Let $f: int \rightarrow int$. Prove f is monotonic if and only if $\forall i \cdot f i \leq f(i+1)$.
- (c) Let $f: nat \rightarrow nat$ be such that $\forall n \cdot ff \, n < f(n+1)$. Prove f is the identity function. Hints: First prove $\forall n \cdot n \le f \, n$. Then prove f is monotonic. Then prove $\forall n \cdot f \, n \le n$.

After trying the question, scroll down to the solution.

(a) Prove f is monotonic if and only if $fi < fj \Rightarrow i < j$. $\forall i, j: i \le j \implies f i \le f j$ contrapositive law $\forall i, j: \neg (f i \le f j) \Rightarrow \neg (i \le j)$ a generic law $\forall i, j : f i > f j \Rightarrow i > j$ = generic mirror, twice $\forall i, j : fj < fi \Rightarrow j < i$ rename i to j and j to i $\forall j, i : fi < fj \Rightarrow i < j$ (b) Let $f: int \rightarrow int$. Prove f is monotonic if and only if $f i \le f(i+1)$. In one direction, $\forall i, j: int \ i \le j \implies f i \le f j$ specialize j as i+1 $\Rightarrow \forall i: int \mid i \le i+1 \Rightarrow fi \le f(i+1)$ $i \le i+1$ is a theorem of arithmetic $\forall i: int \cdot fi \leq f(i+1)$ In the other direction, $(\forall i: int \cdot fi \le f(i+1)) \Rightarrow (\forall i, j: int \cdot i \le j \Rightarrow fi \le fj)$ $(\forall i: int \cdot fi \le f(i+1)) \Rightarrow (\forall i, j: nat, -nat \cdot i \le j \Rightarrow fi \le fj)$ a basic quantifier law $(\forall i: int \mid f \mid \leq f(i+1)) \Rightarrow (\forall i, j: nat \mid i \leq j \Rightarrow f \mid \leq f \mid j) \land (\forall i, j: -nat \mid i \leq j \Rightarrow f \mid \leq f \mid j)$ a binary distributive law = $((\forall i: int \cdot f i \le f(i+1)) \Rightarrow (\forall i, j: nat \cdot i \le j \Rightarrow f i \le f j))$ $\land ((\forall i: int \cdot f i \le f(i+1)) \Rightarrow (\forall i, j: -nat \cdot i \le j \Rightarrow f i \le f j))$ I will prove the first (top) conjunct and the last (bottom) conjunct separately. To prove the first conjunct, I prove $\forall i, j: nat \mid i \le j \Rightarrow fi \le fj$ with context $\forall i: int \mid fi \le f(i+1)$. That means I prove $\forall i, j: nat : i \le j \implies fi \le fj$ while assuming $\forall i: int : fi \le f(i+1)$ as a local axiom. $\forall i, j: nat : i \le j \implies f i \le f j$ write the quantifiers separately $\forall i : nat \cdot \forall j : nat \cdot i \leq j \implies f i \leq f j$ nat induction on j $\iff \forall i: nat$ $(i \le 0 \implies f i \le f 0)$ For i: nat, $(i \le 0) = (i = 0)$, and $f \le 0$ is \top $\land \ (\forall j: nat \cdot (i \le j \implies fi \le fj) \implies (i \le j+1 \implies fi \le f(j+1)))$ = $\forall i, j: nat \ (i \le j \Rightarrow fi \le fj) \Rightarrow (i \le j+1 \Rightarrow fi \le f(j+1))$ generic inclusive law = $\forall i, j: nat \ (i \le j \implies f \ i \le f \ j) \implies (i = j+1 \ \lor \ i < j+1 \implies f \ i \le f \ (j+1))$ antidistributive law $\forall i, j: nat$ $(i \le j \implies f i \le f j)$ $\Rightarrow ((i = j + 1 \implies f \ i \le f \ (j + 1)) \land (i < j + 1 \implies f \ i \le f \ (j + 1)))$ If i = j+1 then $f i \le f(j+1)$ by generic reflexive law. Also $(i < j+1) = (i \le j)$. $\forall i, j: nat \ (i \le j \implies f \ i \le f \ j) \implies (i \le j \implies f \ i \le f \ (j+1))$ portation $\forall i, j: nat : (i \le j \implies f i \le f j) \land i \le j \implies f i \le f (j+1)$ discharge $\forall i, j: nat: i \le j \land fi \le fj \implies fi \le f(j+1)$ add context with i changed to j $\forall i, j: nat: i \le j \land fi \le fj \land fj \le f(j+1) \Rightarrow fi \le f(j+1)$ transitivity $\iff \forall i, j: nat : i \le j \land fi \le f(j+1) \implies fi \le f(j+1)$ reflexivity ← ⊤ To prove the last (bottom) conjunct, I prove $\forall i, j: -nat$ $i \le j \implies f i \le f j$ with context $\forall i: int \cdot fi \leq f(i+1)$. $\forall i, j: -nat : i \le j \implies f i \le f j$ change of variables $\forall i, j: nat : -i \le -j \implies f(-i) \le f(-j)$ write the quantifiers separately $\exists \forall i : nat \forall j : nat -i \leq -j \Rightarrow f(-i) \leq f(-j)$ nat induction on j $\iff \forall i : nat \cdot (-i \le 0 \implies f(-i) \le f(0))$ $\land (\forall j: nat \cdot (-i \le -j \implies f(-i) \le f(-j)) \implies (-i \le -(j+1) \implies f(-i) \le f(-(j+1))))$ **UNFINISHED** \leftarrow T

(c) Let $f: nat \rightarrow nat$ be such that $\forall n \cdot ff \, n < f(n+1)$. Prove f is the identity function. Hints: First prove $\forall n \cdot n \le f \, n$. Then prove f is monotonic. Then prove $\forall n \cdot f \, n \le n$.

§ We first prove $\forall n \cdot n \le f n$ by induction on n. Base case: $n=0: 0 \le f0$ because $f: nat \rightarrow nat$ Assume $\forall n : i \le n \Rightarrow i \le f n$ as induction hypothesis. We must now prove $\forall n : i+1 \le n \implies i+1 \le f n$ which we prove by induction on n. Base case: n=0: $i+1 \le 0 \Rightarrow i+1 \le f0$ has a false antecedent. Assume $n \le f n$ as induction hypothesis. We must now prove $n+1 \le f(n+1)$ n < f(n+1)stick two terms in between $\leftarrow n \le f n \le f f n < f(n+1)$ Use the induction hypothesis for $n \le f n$. Use it again for $f n \le f f n$ with n instantiated as f n. Use the given information f f n < f (n+1) for the final piece. Now we have proven $\forall n \cdot n \le f n$, which means that f lies on or above the diagonal. Next we prove $\forall n \cdot f n < f(n+1)$. f nuse $n \le f n$ with n instantiated as f n. ffnuse the given information ffn < f(n+1)≤ f(n+1)Now we prove $\forall n \cdot f n \leq n$. $f n \leq n$

use part (a) with f n as i and n+1 as j

use the given information.

THIS PROOF NEEDS TO BE MADE FULLY CALCULATIONAL.

f n < n+1

 $\leftarrow ffn < f(n+1)$

= T