Let x be an integer variable. Using the recursive time measure, add time and then find the strongest implementable specifications P and Q that you can find for which

$P \iff x' \geq 0$. Q

$Q \iff \text{if } x=0 \text{ then } \text{ok } \text{ else } x := x - 1. \text{ Q } \text{fi}$

Assume that $x' \geq 0$ takes no time.

Adding time, we have

$P \iff x \geq 0 \land t' = t. \text{ } Q$

$Q \iff \text{if } x = 0 \text{ then } \text{ok } \text{ else } x := x - 1. \text{ t := t + 1. Q } \text{fi}$

For P there is a unique strongest implementable specification; for Q there are many.

$P \equiv x' = 0 \land t' \geq t \land (t < \infty \Rightarrow t' < \infty)$

$Q \equiv \text{if } x \geq 0 \text{ then } x' = 0 \land t' = t + x' \text{ else } x' = 17 \land t' = \infty \text{ fi}$

or choose any number in place of 17.