366 Prove $\neg -1$: *nat*. Hint: You will need induction.

After trying the question, scroll down to the solution.

	$\neg -1: nat$	use law $nat = 0,\infty$
=	¬ −1: 0,∞	definition of ,
=	¬ 0≤–1<∞	drop conjunct
⇐	¬ 0≤−1	direction, translation, and various generic axioms
=	Т	-

§

It seems we didn't need induction, but the law $nat = 0, ..\infty$ needs induction to prove it. See Exercise 373.

Here is a predicate version. First, from either generalization or one-point we have (0) $-1: nat \implies \exists n: nat - 1 = n$ Second, from connection (Galois) $n \le m \equiv \forall k \cdot m \le k \Rightarrow n \le k$ using contrapositive and specialization we have (1) $n \le m \implies -1 < n \implies -1 < m$ Now the proof ¬ −1: *nat* using contrapositive of (0) $\Leftarrow \forall n: nat \neg -1=n$ $\leftarrow \forall n: nat \cdot -1 < n$ now use induction $\Leftarrow -1 < 0 \land (\forall n: nat: -1 < n \Rightarrow -1 < n+1)$ use (1) with n+1 for m \leftarrow -1<0 \land ($\forall n: nat \cdot n \le n+1$) translation twice = 0<1 \land ($\forall n: nat \cdot 0 \le 1$) =Т