- <u>351</u> (dice) If you repeatedly throw a pair of six-sided dice until they are equal,
- (a) $\sqrt{}$ prove the distribution of final times is $(t' \ge t) \times (5/6)^{t'-t} \times 1/6$.
- (b) prove the average final time is t+5.

After trying the question, scroll down to the solution.

prove the distribution of final times is $(t' \ge t) \times (5/6)^{t'-t} \times 1/6$. see book Subsection 5.7.0 (a)√

§

(b) prove the average final time is
$$t+5$$
.
§ $(t' \ge t) \times (5/6)^{t'-t} / 6$. t remove .
 $\equiv \Sigma t'' \cdot (t'' \ge t) \times (5/6)^{t''-t} / 6 \times t''$ factor out $/6$
 $\equiv (\Sigma t'' \cdot (t'' \ge t) \times (5/6)^{t''-t} \times t'')/6$ restate sum informally
 $\equiv ((5/6)^0 \times (t+0) + (5/6)^1 \times (t+1) + (5/6)^2 \times (t+2) + (5/6)^3 \times (t+3) + ...)/6$ split the sum into two sums
 $\equiv ((5/6)^0 \times t + (5/6)^1 \times t + (5/6)^2 \times t + (5/6)^3 \times t + ...)/6$ from the top sum factor out $x \cdot$. In the bottom sum, remove the 0 term.
 $= ((5/6)^0 \times (5/6)^1 + (5/6)^2 + (5/6)^3 \times t + ...)/6$ from the top sum factor out $x \cdot$. In the bottom sum, remove the 0 term.
 $= ((5/6)^0 + (5/6)^1 + (5/6)^2 + (5/6)^3 \times t + ...)/6$ The top sum is a geometric series.
 $= 1/(1-(5/6)) \times t/6$
 $+ ((5/6)^1 \times 1 + (5/6)^2 \times 2 + (5/6)^3 \times 3 + ...)/6$ Simplify top line. In the bottom line, let the sum be $x \cdot$.
 $\equiv t + x/6$
 $x = (5/6)^1 \times 1 + (5/6)^2 \times 2 + (5/6)^3 \times 3 + (5/6)^4 \times 4 + ...$
 $(5/6) \times x = (5/6)^1 + (5/6)^2 + (5/6)^3 \times 2 + (5/6)^4 \times 3 + ...)$ This is a geometric series.
 $x/6 = (5/6)/(1 - (5/6))$
 $x/6 = 5$
 $x = 30$

Returning to the previous calculation, the average final time is

t + x/6= = t + 30/6*t*+5