Prove \(-\infty < y < \infty \land y \neq 0 \Rightarrow (x/y = z \equiv x = z \times y)\).

\[\begin{align*}
\text{§ } &-\infty < y < \infty \land y \neq 0 \\
\Rightarrow &\left(\frac{x}{y} = z \right) \quad \text{use cancellation for } \times \text{ to multiply both sides of the equation by } y \\
\equiv &\quad y \times \left(\frac{x}{y}\right) = y \times z \quad \text{associativity} \\
\equiv &\quad \left(y \times x\right) / y = y \times z \quad \text{symmetry of } \times \text{ twice} \\
\equiv &\quad \left(x \times y\right) / y = z \times y \quad \text{associativity} \\
\equiv &\quad x \times \left(\frac{y}{y}\right) = z \times y \quad \text{inverse} \\
\equiv &\quad x \times 1 = z \times y \quad \text{identity} \\
\equiv &\quad x = z \times y \quad \text{)}
\end{align*} \]