When we defined number expressions, we included complex numbers such as \((-1)^{1/2}\), not because we particularly wanted them, but because it was easier than excluding them. If we were interested in complex numbers, we would find that the number axioms given in Subsection 11.4.2 do not allow us to prove many things we might like to prove. For example, we cannot prove \((-1)^{1/2} \times 0 = 0\). How can the axioms be made strong enough to prove things about complex numbers, but weak enough to leave room for \(\infty\)?