```
334 Could we define the expression P value e with the axiom
```

(a)
$$x'=(P \text{ value } e) = P. x'=e$$

(b)
$$x'=(P \text{ value } e) \implies P. \ x'=e$$

(c)
$$P \Rightarrow (P \text{ value } e) = e'$$

(d)
$$x' = (P \text{ value } e) \land P \implies x' = e'$$

After trying the question, scroll down to the solution.

The **value** expression axiom in Subsection 5.5.0 is

$$P. (P \text{ value } e) = e$$

except that (P value e) is not subject to double-priming in sequential composition, nor to substitution when using the Substitution Law. In one natural variable x, consider \top value x, first under the axiom in Subsection 5.5.0, then under each axiom offered in the exercise.

$$\top$$
. (\top **value** x)= x sequential composition \top

(a)
$$x' = (P \text{ value } e) = P. \ x' = e$$

§ $(x' = (\top \text{ value } x)) = (\top. \ x' = x)$ sequential composition
 $= (x' = (\top \text{ value } x)) = \top$ identity
 $= x' = (\top \text{ value } x)$

but we should get \top , so (a) is stronger than the Subsection 5.5.0 axiom. It leads to inconsistency, as follows.

$$(r' < 5 \text{ value } r) = 3$$
 one-point law in reverse $\forall x' \cdot x' = (r' < 5 \text{ value } r) \Rightarrow x' = 3$ use the (a) axiom $\forall x' \cdot (r' < 5 \cdot x' = r) \Rightarrow x' = 3$ one-point law in reverse $\forall x' \cdot x' < 5 \Rightarrow x' = 3$ one-point law in reverse $\forall x' \cdot x' = 3 \Rightarrow x' = (r' < 5 \text{ value } r)$ use the (a) axiom $\forall x' \cdot x' = 3 \Rightarrow x' = (r' < 5 \text{ value } r)$ use the (a) axiom $\forall x' \cdot x' = 3 \Rightarrow (r' < 5 \cdot x' = r)$ $\forall x' \cdot x' = 3 \Rightarrow x' < 5$ $\forall x' \cdot x' = 3 \Rightarrow x' < 5$

(b)
$$x' = (P \text{ value } e) \implies P. \ x' = e$$

§ $x' = (\top \text{ value } x) \implies (\top . \ x' = x)$ sequential composition
 $= x' = (\top \text{ value } x) \implies \top$ base
 $= \top$

so maybe this one is all right.

(c)
$$P \Rightarrow (P \text{ value } e) = e'$$

§ $\top \Rightarrow (\top \text{ value } x) = x'$ identity
 $= (\top \text{ value } x) = x'$

but we should get \top , so (c) is stronger than the Subsection 5.5.0 axiom. It leads to inconsistency, as follows.

$$(r' < 5 \text{ value } r) = 3$$
 one-point law in reverse
 $\Rightarrow \forall x' \cdot x' = (r' < 5 \text{ value } r) \Rightarrow x' = 3$ use the (c) axiom
 $\Rightarrow \forall x' \cdot r' < 5 \Rightarrow x' = 3$ one-point law in reverse
 $(r' < 5 \text{ value } r) = 3$ one-point law in reverse
 $\Rightarrow \forall x' \cdot x' = 3 \Rightarrow x' = (r' < 5 \text{ value } r)$ use the (c) axiom
 $\Rightarrow \forall x' \cdot x' = 3 \Rightarrow x' = (r' < 5 \text{ value } r)$ use the (c) axiom

Now we have

$$r' < 5 \Rightarrow (r' < 5 \text{ value } r) = 3 \Rightarrow \neg r' < 5$$

from which we conclude $\neg r' < 5$. By a very similar calculation, we can prove $\neg r' \ge 5$, contradicting trichotomy.

(d)
$$x'=(P \text{ value } e) \land P \Rightarrow x'=e'$$

 $x'=(\top \text{ value } x) \land \top \Rightarrow x'=x$ $= x'=(\top \text{ value } x) \Rightarrow x'=x$ but we should get \top , so (d) is stronger than the Subsection 5.5.0 axiom.

identity