Here is one way that we might consider defining the \texttt{for}-loop. Let \(j, n, k \) and \(m \) be integer expressions, and let \(i \) be a fresh name.

\[
\begin{align*}
\text{for } i := \text{nil} \text{ do } P \text{ od } &= \text{ ok} \\
\text{for } i := j \text{ do } P \text{ od } &= \text{ (substitute } j \text{ for } i \text{ in } P \text{) } \\
\text{for } i := (n;..k); (k;..m) \text{ do } P \text{ od } &= \text{ for } i := n;..k \text{ do } P \text{ od. for } i := k;..m \text{ do } P \text{ od}
\end{align*}
\]

(a) From this definition, what can we prove about \texttt{for } i := 0;..n \texttt{ do } n := n + 1 \texttt{ od } where \(n \) is an integer variable?

(b) What kinds of \texttt{for}-loop are in the programming languages you know?

no solution given