The notation \texttt{do }P\texttt{ while }b\texttt{ od} has been used as a loop construct that is executed as follows. First, \(P \) is executed; then \(b \) is evaluated, and if its value is \(\top \) then execution is repeated, and if its value is \(\bot \) then execution is finished.

(a) Let \(x \) be an integer variable. Prove \(\mod x' 2 = \mod x 2 \iff \texttt{do }x := x-2\texttt{ while }x \geq 2\texttt{ od} \)

(b) Let \(m \) and \(n \) be integer variables. Prove \(m := m + n - 10.\ n := 10 \iff \texttt{do }m := m-1\texttt{ while }n \neq 10\texttt{ od} \)

(c) In parts (a) and (b), add a time variable, and charge time \(1 \) for each loop iteration. Notice that for this loop, recursive time is not quite the same as charging time \(1 \) for each iteration. Choose a time specification, and prove it.

After trying the question, scroll down to the solution.
§ In part (a), to count iterations, put the time increment as follows:
\[
\text{do } t := t + 1 \text{ while } x \geq 2 \text{ od}
\]

§ To prove \(S \) is refined by \(\text{do } P \text{ while } b \text{ od} \), prove instead
\[
S \iff P. \text{ if } b \text{ then } S \text{ else } \top \text{ fi}
\]
So we prove
\[
(mod \ x' \ 2 = mod \ x \ 2 \iff x := x-2. \text{ if } x \geq 2 \text{ then } mod \ x' \ 2 = mod \ x \ 2 \text{ else } \top \text{ fi})
\]

\[
= (mod \ x' \ 2 = mod \ x \ 2 \iff x := x-2. \text{ if } x \geq 2 \text{ then } mod \ x' \ 2 = mod \ x \ 2 \text{ else } x' = x \text{ fi})
\]

\[
= mod \ x' \ 2 = mod \ x \ 2 \iff \text{if } x-2 \geq 2 \text{ then } mod \ x' \ 2 = mod \ (x-2) \ 2 \text{ else } x' = x-2 \text{ fi}
\]

\[
= (mod \ x' \ 2 = mod \ x \ 2 \iff \text{mod } x' \ 2 = \text{mod } (x-2) \ 2)
\]

\[
\iff (mod \ x' \ 2 = mod \ x \ 2 \iff \text{mod } x' \ 2 = \text{mod } (x-2) \ 2)
\]

\[
\iff \text{context again}
\]

\[
\iff \text{specialization and specialization again}
\]

\[
\iff \text{context and context again}
\]

\[
\iff \text{substitution law twice}
\]

\[
\iff \text{if and then parts arithmetic; in else part context: } n=9
\]

\[
\iff \text{case idempotent}
\]

\[
\iff \text{definition of assignment and sequential composition}
\]

\[
\iff m := m+n-10. \text{ } n := 10
\]

(b) Let \(m \) and \(n \) be integer variables. Prove
\[
m:= m+n-10. \text{ } n := 10 \iff \text{do } m := m-1. \text{ } n := n+1 \text{ while } n \neq 10 \text{ od}
\]

§ Apparently, we are not talking about time in this question; we don't have variable \(t \). So we can't talk about termination or nontermination, because those are timing issues.

I prove
\[
m := m+n-10. \text{ } n := 10 \iff \text{if } n \neq 10 \text{ then } m := m+n-10. \text{ } n := 10 \text{ else } \top \text{ fi}
\]
starting with the right side.
\[
m := m-1. \text{ } n := n+1. \text{ if } n \neq 10 \text{ then } m := m+n-10. \text{ } n := 10 \text{ else } \top \text{ fi}
\]
replace \(n := 10 \) and \(\top \).
\[
m := m-1. \text{ } n := n+1. \text{ if } n \neq 10 \text{ then } m := m+n-10. \text{ } m' = m \land n' = 10 \text{ else } m' = m \land n' = n \text{ fi}
\]
substitution law in then part.
\[
m := m-1. \text{ } n := n+1. \text{ if } n \neq 10 \text{ then } m' := m+n-10 \land n' = 10 \text{ else } m' = m \land n' = n \text{ fi}
\]
substitution law twice.
\[
\text{if } n+1 \neq 10 \text{ then } m' = m-1+n+1-10 \land n' = 10 \text{ else } m' = m-1 \land n' = n+1 \text{ fi}
\]
if and then parts arithmetic; in else part context: \(n=9 \).
\[
\text{if } n+9 \text{ then } m' = m+n-10 \land n' = 10 \text{ else } m' = m+n-10 \land n' = n \text{ fi}
\]
case idempotent.
\[
\iff m' = m+n-10 \land n' = 10
\]
definition of assignment and sequential composition.
\[
\iff m := m+n-10. \text{ } n := 10
\]

(c) In parts (a) and (b), add a time variable, and charge time 1 for each loop iteration. Notice that for this loop, recursive time is not quite the same as charging time 1 for each iteration. Choose a time specification, and prove it.

§ In part (a), to count iterations, put the time increment as follows:
\[
\text{do } t := t+1. \text{ } x := x-2 \text{ while } x \geq 2 \text{ od}
\]
My time specification is
\[
\text{if } x \geq 2 \text{ then } t' = t + \text{floor}(x/2) \text{ else } t' = t+1 \text{ fi}
\]
But \(\text{floor} \) is an awkward function to deal with, so I weaken my specification slightly to
\[
\text{if } x \geq 2 \text{ then } t' \leq t + x/2 \text{ else } t' = t+1 \text{ fi}
\]
So I prove
\[
\text{if } x \geq 2 \text{ then } t' \leq t + x/2 \text{ else } t' = t+1 \text{ fi}
\]

\[
\text{starting with the right (bottom) side:}
\]
\[
 t := t+1. \ x := x-2. \text{ if } x \geq 2 \text{ then if } x \geq 2 \text{ then } t' \leq t + x/2 \text{ else } t' = t+1 \text{ fi else ok fi}
\]

\[
\text{context } x \geq 2
\]

\[
\Rightarrow t := t+1. \ x := x-2. \text{ if } x \geq 2 \text{ then } t' \leq t + x/2 \text{ else ok fi}
\]

\[
\Rightarrow t := t+1. \ x := x-2. \text{ if } x \geq 2 \text{ then } t' \leq t + x/2 \text{ else } t' = t+1 \text{ fi}
\]

\[
\Rightarrow \text{ if } x \geq 4 \text{ then } t' \leq t + x/2 \text{ else } t' = t+1 \text{ fi}
\]

\[
\text{In part (b), to count iterations, put the time increment as follows:}
\]
\[
\text{do } t := t+1. \ m := m-1. \ n := n+1 \text{ while } n \neq 10 \text{ od}
\]

\[
\text{My time specification is if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi}
\]

\[
\text{So I prove}
\]
\[
\text{if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi}
\]

\[
\text{starting with the right (bottom) side.}
\]
\[
 t := t+1. \ m := m-1. \ n := n+1.
\]
\[
\text{if } n + 10 \text{ then if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ else ok fi}
\]

\[
\Rightarrow t := t+1. \ m := m-1. \ n := n+1.
\]
\[
\text{if } n + 10 \text{ then if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ else } t' = t \text{ fi}
\]

\[
\Rightarrow \text{ if } n + 10 \text{ then if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi else } t' = t \text{ fi}
\]

\[
\Rightarrow \text{ if } n + 10 \text{ then if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi else } t' = t+1 \text{ fi}
\]

\[
\Rightarrow \text{ if } n + 10 \text{ then if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi else } t' = t+1 \text{ fi}
\]

\[
\Rightarrow \text{ if } n + 10 \text{ then if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi else } t' = t+1 \text{ fi}
\]

\[
\Rightarrow \text{ if } n + 9 \text{ then if } n < 9 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi else } t' = t+1 \text{ fi}
\]

\[
\Rightarrow \text{ if } n + 9 \text{ then if } n < 9 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi else } t' = t+10-n \text{ fi}
\]

\[
\Rightarrow \text{ if } n < 10 \text{ then } t' = t+10-n \text{ else } t' = \infty \text{ fi}
\]