Given natural list variable \(L \), index variable \(i \), and time variable \(t \), increase each list item by 1 until you have created item 100. The time is bounded by \(\#L \). The program is

\[
i := 0, \\
\textbf{do} \quad \textbf{exit when} \ i = \#L. \\
L \ i := L \ i + 1. \\
\textbf{exit when} \ L \ i = 100. \\
i := i + 1 \quad \textbf{od}
\]

Write a formal specification, and prove it is refined by the program.

\[\textbf{§} \quad \text{Define} \ k \text{ as the first index where} \ L \ k = 99, \text{ or } \#L \text{ if there's no such index.} \]

\[\neg (\exists j: 0,..k \cdot L j = 99) \land (L k = 99 \lor k = \#L)\]

Now the specification \(S \) is

\[
(\forall j: 0,..k \cdot L' j = L j + 1) \\
\land (L k = 99 \land L' k = 100) \land (\forall j: k+1,..\#L: L' j = L j) \lor k = \#L) \\
\land t' \leq t + \#L
\]

Define loop specification \(P \) to be like \(S \) but from index \(i \) rather than from 0.

\[
(\forall j: i,..k \cdot L' j = L j + 1) \\
\land (L k = 99 \land L' k = 100) \land (\forall j: k+1,..\#L: L' j = L j) \lor k = \#L) \\
\land t' \leq t + \#L - i
\]

We have two refinements to prove.

\[
S \iff i := 0. \ P \\
P \iff \text{if } i = \#L \text{ then } ok \ \text{ else } L := i \rightarrow L i + 1 \mid L. \ \text{ if } L i = 100 \text{ then } ok \ \text{ else } i := i + 1. \ P \text{ fi fi}
\]

The first is easy: replacing \(i \) by 0 in \(P \) we obtain \(S \). We prove the last refinement by cases. First case.

\[
i = \#L \land ok \Rightarrow P \quad \text{UNFINISHED}
\]

Last refinement, last case.

\[
i + \#L \land (L := i \rightarrow L i + 1 \mid L. \ \text{ if } L i = 100 \text{ then } ok \ \text{ else } i := i + 1. \ P \text{ fi}) \Rightarrow P
\]

\[
= \quad \top \quad \text{UNFINISHED}
\]