For what exact precondition and postcondition does the following assignment move integer variable \(x \) farther from zero staying on the same side of zero?

§ What does “staying on the same side of zero” mean if the initial value of \(x \) is zero? Since that's not clear, let’s say that \(x' \) can be on either side in that case. The specification is:

\[
(x < 0 \Rightarrow x' < 0) \land (x = 0 \Rightarrow x' > 0) \land (x > 0 \Rightarrow x' > 0)
\]

\[
= x' < 0 \lor x' + x = 0 \lor x' > 0
\]

(a) \(x := x + 1 \)

§ (exact precondition for \(x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \) to be refined by \(x := x + 1 \))

\[
\forall x'. \quad x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \iff (x := x + 1)
\]

\[
\forall x'. \quad x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \iff x' = x + 1 \quad \text{One-point}
\]

\[
x + 1 < x < 0 \lor x + 1 + x = 0 \lor x + 1 > x > 0
\]

\[
\perp \lor x = 0 \lor x > 0
\]

\[
x = 0
\]

We can be sure that \(x := x + 1 \) will move \(x \) farther from zero, staying on the same side, if \(x \geq 0 \).

(b) \(x := \text{abs} \ (x + 1) \)

§ (exact precondition for \(x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \) to be refined by \(x := \text{abs} \ (x + 1) \))

\[
\forall x'. \quad x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \iff (x := \text{abs} \ (x + 1))
\]

\[
\forall x'. \quad x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \iff x' = \text{abs} \ (x + 1) \quad \text{One-point}
\]

\[
\text{abs} \ (x + 1) < x < 0 \lor \text{abs} \ (x + 1) + x = 0 \lor \text{abs} \ (x + 1) > x > 0
\]

\[
\perp \lor x = 0 \lor x > 0
\]

\[
x = 0
\]

We can be sure that \(x := \text{abs} \ (x + 1) \) will move \(x \) farther from zero, staying on the same side, if \(x \geq 0 \).

(c) \(x := x^2 \)

§ (exact precondition for \(x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \) to be refined by \(x := x^2 \))

\[
\forall x'. \quad x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \iff (x := x^2)
\]

\[
\forall x'. \quad x' < x < 0 \lor x' + x = 0 \lor x' > x > 0 \iff x' = x^2 \quad \text{One-point}
\]
\(x^2 < 0 \) \lor \ x^2 + x = 0 \lor \ x^2 > 0 \)
\(x \geq 2 \)
We can be sure that \(x := x^2 \) will move \(x \) farther from zero, staying on the same side, if \(x \geq 2 \).

(exact postcondition for \(x' < 0 \lor x' + x = 0 \lor x' > 0 \) to be refined by \(x := x^2 \))
\(\forall x : x' < 0 \lor x' + x = 0 \lor x' > 0 \iff (x := x^2) \)
\(\forall x : x^2 < 0 \lor x^2 + x = 0 \lor x^2 > 0 \iff x' = x^2 \)
\(\forall x : \bot \lor \bot \lor x > 1 \iff x' = x^2 \)
contrapositive
\(\forall x : x \leq 1 \Rightarrow x' + x^2 \)
\(\forall x : x \leq 1 \Rightarrow x' + x^2 \)
\((\forall x : x \leq 1 \Rightarrow x' + x^2) \land (\forall x : x \leq 1 \Rightarrow x' + x^2) \)
\((\forall x : x \leq 1 \Rightarrow x' + x^2) \land (\forall x : -x \leq 1 \Rightarrow x' + (-x)^2) \)
\((\forall x : x \leq 1 \Rightarrow x' + x^2) \land (\forall x : x > -1 \Rightarrow x' + x^2) \)
combine
\(\forall x : x' + x^2 \)
We can be sure that \(x := x^2 \) moved \(x \) farther from zero, staying on the same side, if \(x' \) is not a square. But of course it will be a square, so we can never be sure that \(x \) moved farther from zero, staying on the same side.