Let \(S \) be a specification. Let \(A \) be an assertion and let \(A' \) be the same as \(A \) but with primes on all the variables. How does the exact precondition for \(A' \) to be refined by \(S \) differ from \((S, A)\) ? Hint: consider prestates in which \(S \) is unsatisfiable, then deterministic, then nondeterministic.

After trying the question, scroll down to the solution.
§ (the exact precondition for A' to be refined by S)

\[\forall \sigma' \cdot A' \Leftarrow S \]

definition of sequential composition

\[S, A \]

rename σ'' to σ'

\[\exists \sigma'' \cdot (\sigma'' \cdot S) \land (\sigma \cdot A) \sigma'' \]

\[\exists \sigma' \cdot S \land A' \]

We are being asked about the difference between $\forall \sigma' \cdot A' \Leftarrow S$ and $\exists \sigma' \cdot S \land A'$. In a prestate for which S is both satisfiable and deterministic, there is no difference. In a prestate for which S is unsatisfiable, $\forall \sigma' \cdot A' \Leftarrow S$ is \top and $\exists \sigma' \cdot S \land A'$ is \bot. In a prestate for which S is nondeterministic, $\forall \sigma' \cdot A' \Leftarrow S$ is as strong as or stronger than $\exists \sigma' \cdot S \land A'$; if A' is \top for all corresponding poststates, they are equal; if A' is \bot for all corresponding poststates, they are equal; but if A' is \top for some and \bot for other corresponding poststates, then $\forall \sigma' \cdot A' \Leftarrow S$ is \bot and $\exists \sigma' \cdot S \land A'$ is \top. Here is an example to illustrate the difference. Let n be a natural variable, let $S = n' < n$, and let $A' = n' = 0$. If $n = 0$, S is unsatisfiable, and

\[n=0 \Rightarrow (\forall \sigma' \cdot A' \Leftarrow S) \land \neg (\exists \sigma' \cdot S \land A') \]

If $n = 1$, S is satisfiable and deterministic, and

\[n=1 \Rightarrow (\forall \sigma' \cdot A' \Leftarrow S) \land (\exists \sigma' \cdot S \land A') \]

If $n = 2$, S is nondeterministic, and

\[n=2 \Rightarrow \neg (\forall \sigma' \cdot A' \Leftarrow S) \land (\exists \sigma' \cdot S \land A') \]