Suppose variable declaration with initialization is defined as
\[
\text{\texttt{var x: T := e \cdot P}} = \text{\texttt{var x: T \cdot x := e \cdot P}}
\]
In what way does this differ from the definition given in Subsection 5.0.0?

§ According to Subsection 5.0.0,
\[
\text{\texttt{var x: T := e \cdot P}}
\]
\[
= \exists x: e \cdot \exists x': T \cdot P
\]
\[
= (\text{for } x \text{ substitute } e \text{ in } \exists x': T \cdot P) \quad \text{assuming } T \text{ cannot mention } x
\]
\[
\quad \text{and } e \text{ cannot mention } x'
\]
\[
= \exists x': T \cdot (\text{for } x \text{ substitute } e \text{ in } P) \quad \text{assuming } e \text{ cannot mention } x
\]
\[
= \exists x: T \cdot \exists x': T \cdot (x := e \cdot P) \quad \text{substitution law}
\]
\[
= \exists x, x': T \cdot (x := e \cdot P)
\]
\[
= \text{\texttt{var x: T \cdot x := e \cdot P}}
\]

With the three assumptions, there's no difference. So let's violate those assumptions. First, let \(T = x+1 \).

\[
\text{\texttt{var x: x+1 \cdot x := e \cdot P}}
\]
\[
= \exists x, x': x+1 \cdot (x := e \cdot P)
\]
\[
= \exists x: x+1 \rightarrow \exists x': x+1 \cdot (x := e \cdot P)
\]

Section 3.0 defines a function by saying “Let \(v \) be a name, and let \(D \) be a bunch of items (possibly using previously introduced names but not using \(v \)), ...”. We do not have a definition of \(\langle x: x+1 \rightarrow \cdots \rangle \).

Next, suppose \(e = x+1 \).

\[
\text{\texttt{var x: T := x+1 \cdot P}}
\]
\[
= \exists x: x+1 \cdot \exists x': T \cdot P
\]
\[
= \exists x: x+1 \rightarrow \exists x': T \cdot P
\]

So again we do not have a definition of \(\langle x: x+1 \rightarrow \cdots \rangle \).

Last, suppose \(e = x'+1 \).

\[
\text{\texttt{var x: T := x'+1 \cdot P}}
\]
\[
= \exists x: x'+1 \cdot \exists x': T \cdot P
\]

The \(x' \) appearing first is not the same variable as the \(x' \) appearing second.