(squash) Let L be a list variable assigned a non-empty list. Reassign it so that any run of two or more identical items is collapsed to a single item.

After trying the question, scroll down to the solution.
§ Let \(i \) be a natural variable used to index \(L \). The program is
\[
P \iff i := 1 . \ Q
Q \iff \text{if } i = \#L \text{ then } \text{ok}
\text{else if } L \ i = L(i-1) \text{ then } L := L((0;..i) ; (i+1;..\#L))
\text{else } i := i+1 \ fi \ Q \ fi
\]

Now we need to define specifications \(P \) and \(Q \), and then prove the two refinements. Part of the specification says that \(L \) and \(L' \) have the same items in them.
\[L(0,..\#L) = L'(0,..\#L') \]
Another part of the specification is that in \(L' \) no two adjacent items are equal.
\[\neg \exists j: 1,..\#L' \cdot L' j = L'(j-1) \]
The rest of the specification is that the items of \(L' \) are in the same order as in \(L \). I don't know how to formalize that. So I'll prove what I can.

Let's start with
\[P = Q = L(0,..\#L) = L'(0,..\#L') \]
Here's the proof of the first refinement, starting with the right side.
\[
i := 1 . \ Q \iff i := 1 . \ L(0,..\#L) = L'(0,..\#L') \iff L(0,..\#L) = L'(0,..\#L') \iff P
\]
Now the last refinement, by cases. First case:
\[
i = \#L \land \text{ok} \iff i = \#L \land L' = L \land i' = i \implies Q
\]
Middle case:
\[
i + \#L \land L \ i = L(i-1) \land (L := L((0;..i) ; (i+1;..\#L))) \iff Q \implies Q
\]
Last case:
\[
i + \#L \land L \ i = L(i-1) \land L := L((0,..\#L) ; (i+1;..\#L)) \iff Q \implies Q
\]

Now redefine
\[P = \neg \exists j: 1,..\#L' \cdot L' j = L'(j-1) \]
\[Q = \neg \exists j: i,..\#L' \cdot L' j = L'(j-1) \]
Here's the proof of the first refinement, starting with the right side.
\[
i := 1 . \ Q \iff i := 1 \cdot \neg \exists j: i,..\#L' \cdot L' j = L'(j-1) \iff \neg \exists j: 1,..\#L' \cdot L' j = L'(j-1) \iff P
\]
Now the last refinement, by cases. First case:
\[
i = \#L \land \text{ok} \iff i = \#L \land L' = L \land i' = i \implies Q \iff \text{null domain}
\]
Middle case:
\[
i + \#L \land L \ i = L(i-1) \land (L := L((0;..i) ; (i+1;..\#L))) \iff Q \implies Q
\]
Last case:
\[i \neq \#L \land L \neq L(i-1) \land (i := i + 1. \ Q) \]
\[\Rightarrow \ UNFINISHED \]

The recursive time is \#L − 1. Redefine

\[P \Leftarrow t' = t + \#L - 1 \]
\[Q \Leftarrow t' = t + \#L - i \]

and insert the time increment

\[P \Leftarrow i := 1. \ Q \]
\[Q \Leftarrow \text{if } i = \#L \text{ then ok} \]
\[\quad \text{else if } L \neq L(i-1) \text{ then } L := L((0, i) ; (i + 1, \#L)) \]
\[\quad \text{else } i := i + 1 \text{ fi} \quad t := t + 1. \ Q \text{ fi} \]

UNFINISHED