(a) Given list \(P \), find list \(L \) such that for every index \(n \) of list \(P \), \(L_n \) is the length of the longest list that is both a proper prefix and a proper suffix of \(P[0..n+1] \). Here is a program to find \(L \).

\[
\begin{align*}
A & \equiv i := 0. \quad L := \lceil #P \rceil \cdot j := 1. \quad B \\
B & \equiv \text{if } j \geq #P \text{ then } \text{ok} \ \text{else} \ C. \quad L := j \rightarrow i \mid L. \quad j := j + 1. \quad B \ \text{fi} \\
C & \equiv \text{if } P_i = P_j \text{ then } i := i + 1 \\
& \quad \text{else if } i = 0 \text{ then } \text{ok} \\
& \quad \quad \text{else } i := L(i - 1). \quad C \ \text{fi} \\
\end{align*}
\]

Find specifications \(A \), \(B \), and \(C \) so that \(A \) is the problem and the three refinements are theorems.

(b) Given list \(S \) (subject), list \(P \) (pattern), and list \(L \) (as in part (a)), determine if \(P \) is a segment of \(S \), and if so, where it occurs. Here is a program.

\[
\begin{align*}
D & \equiv m := 0. \quad n := 0. \quad E \\
E & \equiv \text{if } m = #P \text{ then } h := n - #P \ \text{else} \ F \ \text{fi} \\
F & \equiv \text{if } n = #S \text{ then } h := \infty \\
& \quad \text{else if } P_m = S_n \text{ then } m := m + 1. \quad n := n + 1. \quad E \\
& \quad \quad \text{else } G \ \text{fi} \\
G & \equiv \text{if } m = 0 \text{ then } n := n + 1. \quad F \ \text{else} \ m := L(m - 1). \quad G \ \text{fi} \\
\end{align*}
\]

Find specifications \(D \), \(E \), \(F \), and \(G \) so that \(D \) is the problem and the four refinements are theorems.