278 (shift test) You are given two infinitely long lists A and B. The items can be compared for order. Both lists have period n: nat+1. $\forall k: nat A = A (k+n) \land B = B (k+n)$

Write a program to determine if A and B are the same except for a shift of indexes.

After trying the question, scroll down to the solution.

The result we want is R defined as

 $R \equiv s' = \exists i, j \cdot \forall k \cdot A(i+k) = B(j+k)$

where quantifications are over nat, but thanks to periodicity we can take them to be over 0, ...n. Now define a to be the maximum of all segments of A of length n using list order. Define b similarly.

 $a = \bigwedge k \cdot A[k; ..k+n]$

 $b = \bigwedge k \cdot B[k; ...k+n]$

Now define Q to say that up to starting index i, all segments of A of length n are less than b, and symmetrically that up to starting index j, all segments of B of length n are less than a.

 $Q = (\forall k: 0, ...i: A[k; ...k+n] < b) \land (\forall k: 0, ...j: B[k; ...k+n] < a)$

And finally, let P say that a segment of A starting at i of length h equals a segment of B starting at j of length h.

P = A[i;..i+h] = B[j;..j+h]

Now the problem is solved as follows.

 $R \iff i:=0, j:=0, i<n \land j<n \land Q \Rightarrow R$ $i<n \land j<n \land Q \Rightarrow R \iff h:=0, i<n \land j<n \land Q \land h<n \land P \Rightarrow R$ $i<n \land j<n \land Q \land h<n \land P \Rightarrow R \iff$ $i<n \land j<n \land Q \land h<n \land P \Rightarrow R \iff$ $if A(i+h) < B(j+h) \text{ then } i:=i+h+1, j<n \land Q \Rightarrow R$ $else if A(i+h) > B(j+h) \text{ then } j:=j+h+1, i<n \land Q \Rightarrow R$ $else h:=h+1, i<n \land j<n \land Q \land h\leq n \land P \Rightarrow R \text{ fi fi}$ $j<n \land Q \Rightarrow R \iff if i>n \text{ then } s:= \bot else i<n \land j<n \land Q \Rightarrow R \text{ fi}$ $i<n \land Q \Rightarrow R \iff if j>n \text{ then } s:= \bot else i<n \land j<n \land Q \Rightarrow R \text{ fi}$ $i<n \land Q \land h\leq n \land P \Rightarrow R \iff$

if h=n **then** $s:= \top$ **else** $i < n \land j < n \land Q \land h < n \land P \Rightarrow R$ **fi**

The execution time bound $3 \times n$ is easily proven, but I think maybe $2 \times n$ is possible.