You are given two infinitely long lists \(A \) and \(B \). The items can be compared for order. Both lists have period \(n: \text{nat} + 1 \).

\[\forall k: \text{nat} \cdot A \ k = A \ (k+n) \land B \ k = B \ (k+n) \]

Write a program to determine if \(A \) and \(B \) are the same except for a shift of indexes.

The result we want is \(R \) defined as

\[R = s' = \exists i, j \forall k \cdot A(i+k) = B(j+k) \]

where quantifications are over \(\text{nat} \), but thanks to periodicity we can take them to be over \(0..n \). Now define \(a \) to be the maximum of all segments of \(A \) of length \(n \) using list order. Define \(b \) similarly.

\[a = \uparrow k \cdot A[\ldots k+n] \]
\[b = \uparrow k \cdot B[\ldots k+n] \]

Now define \(Q \) to say that up to starting index \(i \), all segments of \(A \) of length \(n \) are less than \(b \), and symmetrically that up to starting index \(j \), all segments of \(B \) of length \(n \) are less than \(a \).

\[Q = (\forall k: 0..i \cdot A[\ldots k+n] < b) \land (\forall k: 0..j \cdot b[\ldots k+n] < a) \]

And finally, let \(P \) say that a segment of \(A \) starting at \(i \) of length \(h \) equals a segment of \(B \) starting at \(j \) of length \(h \).

\[P = A[i\ldots i+h] = B[j\ldots j+h] \]

Now the problem is solved as follows.

\[R \iff i:=0. \ j:=0. \ i<n \land j<n \land Q \Rightarrow R \]
\[i<n \land j<n \land Q \Rightarrow R \iff h:=0. \ i<n \land j<n \land Q \land h<n \land P \Rightarrow R \]

\[i<n \land j<n \land Q \Rightarrow R \iff \begin{cases} \text{if } A(i+h) < B(j+h) \text{ then } i:=i+h+1. \ j<n \land Q \Rightarrow R \\ \text{else if } A(i+h) > B(j+h) \text{ then } j:=j+h+1. \ i<n \land Q \Rightarrow R \\ \text{else } h:=h+1. \ i<n \land j<n \land Q \land h\leq n \land P \Rightarrow R \fi \]
\[j<n \land Q \Rightarrow R \iff \begin{cases} \text{if } i\geq n \text{ then } s:=\bot \text{ else } i<n \land j<n \land Q \Rightarrow R \fi \]
\[i<n \land Q \Rightarrow R \iff \begin{cases} \text{if } j\geq n \text{ then } s:=\top \text{ else } i<n \land j<n \land Q \Rightarrow R \fi \]
\[i<n \land j<n \land Q \land h<n \land P \Rightarrow R \iff \begin{cases} \text{if } h=n \text{ then } s:=\top \text{ else } i<n \land j<n \land Q \land h<n \land P \Rightarrow R \fi \]

The execution time bound \(3n \) is easily proven, but I think maybe \(2n \) is possible.