You are given a list variable \(L \) assigned a nonempty list. All changes to \(L \) must be via procedure \(\text{swap} \), defined as
\[
\text{swap} = \langle i, j : \Box L \rightarrow L := i \rightarrow Lj \mid j \rightarrow Li \mid L \rangle
\]

(a) Write a program to reassign \(L \) a new list obtained by rotating the old list one place to the right (the last item of the old list is the first item of the new).

Let \(R = L' = L[#L-1; 0;..\#L-1] \). Let \(Q = L' = L[i; 0;\ldots; i+1;..\#L] \). Then
\[
R \leftarrow i := \#L-1, Q
\]
\[
Q \leftarrow \text{if} \ i = 0 \ \text{then} \ \text{ok} \ \text{else} \ \text{swap} \ (i-1) \ i. \ i := i-1. \ \text{Q fi}
\]

Proof of last refinement:
\[
i := \#L-1, Q
\]
\[
\Rightarrow \ L' = L[#L-1; 0;..\#L-1]
\]
\[
= \ R
\]

Proof of \(Q \) refinement, first case:
\[
i = 0 \land \text{ok}
\]
\[
\Rightarrow \ L' = L[i; 0;\ldots; i+1;..\#L]
\]
\[
= \ Q
\]

Proof of \(Q \) refinement, last case:
\[
i = 0 \land (\text{swap} \ (i-1) \ i. \ i := i-1). \ Q
\]
\[
\Rightarrow \ L' = L[i; 0;\ldots; i+1;..\#L]
\]
\[
= \ Q
\]

Now for the timing.
\[
t' = t + \#L-1 \ \Leftarrow \ i := \#L-1. \ t' = t+i
\]
\[
t' = t+i \ \Leftarrow \ \text{if} \ i = 0 \ \text{then} \ \text{ok} \ \text{else} \ \text{swap} \ (i-1) \ i. \ i := i-1. \ t := t+1. \ t' = t+i \ \text{fi}
\]

Proof of first refinement:
\[
i := \#L-1. \ t' = t+i
\]
\[
\Rightarrow \ t' = t+\#L-1
\]

Proof of last refinement, first case:
\[
i = 0 \land \text{ok}
\]
\[
\Rightarrow \ t' = t+i
\]

Proof of last refinement, last case:
\[
i = 0 \land (\text{swap} \ (i-1) \ i. \ i := i-1. \ t := t+1. \ t' = t+i)
\]
\[
\Rightarrow \ t' = t+i
\]

This should be just right for a \textbf{for}-loop. Let \(M \) be a list constant equal to the original value of \(L \). Since all changes to \(L \) are via \text{swap}, \#M=\#L always. Let condition
\[
A_i \equiv L = M[0;\ldots;\#M-i; \#M-1; \#M-\ldots;\#M-1]
\]
Then \(A_1 = L=M \) and \(A'(#L)=R \).
\[
R \Leftarrow \text{for} \ i := 1;..\#L \ \text{do} \ \text{swap} \ (\#L-i-1) \ (\#L-i) \ \text{od}
\]

(b) (rotate) Given an integer \(r \), write a program to reassign \(L \) a new list obtained by rotating the old list \(r \) places to the right. (If \(r<0 \), rotation is to the left \(-r \) places.) Recursive execution time must be at most \#L.
Given an index \(p \), swap the initial segment up to \(p \) with the final segment beginning at \(p \).

The problem can be stated as \(0 \leq p < \#L \Rightarrow L' = L[p;\#L ; 0;p] \). We introduce variables \(a \) and \(b \) for the lengths of the left and right segments. During execution, the extreme parts of the list \(L[0;..p-a] \) and \(L[p+b;\#L] \) will be in place, with the center portions \(L[p-a;..p] \) and \(L[p;..p+b] \) still to be swapped. Define

\[
Q = 0 < b \Rightarrow L' = L[0;..p-a ; p;..p+b ; p-a;..p ; p+b;..\#L]
\]

Now refine:

\[
0 \leq p < \#L \Rightarrow L' = L[p;\#L ; 0;p] \iff a:= p. \ b:= \#L-p. \ Q
\]

\[
Q \iff \text{if } a=0 \text{ then } \text{ok}
\]

\[
\text{else if } a<b
\]

\[
\text{then } L:= L[0;..p-a ; p+b-a;..p+b ; p;..p+b-a ; p-a;..p ; p+b;..\#L].
\]

\[
b:= b-a. \ Q
\]

\[
\text{else } L:= L[0;..p-a ; p;..p+b ; p-a+b;..p ; p-a;..p-a+b ; p+b;..\#L].
\]

\[
a:= a-b. \ Q \text{ fi fi}
\]

The two assignments to \(L \) are not allowed, so we must still refine them. But they swap segments of equal size, so they are easier than the original problem.

\[
L:= L[0;..p-a ; p+b-a;..p+b ; p;..p+b-a ; p-a;..p ; p+b;..\#L] \iff
\]

\[
\text{for } i:= p-a;..p \text{ do swap } i (i+b) \text{ od}
\]

\[
L:= L[0;..p-a ; p;..p+b ; p-a+b;..p ; p-a;..p-a+b ; p+b;..\#L] \iff
\]

\[
\text{for } i:= p;..p+b \text{ do swap } i (i-a) \text{ od}
\]

The time for the whole problem is \(\#L \), and the time for \(Q \) is \(a+b \).