
266 (partitions)  A list of positive integers is called a partition of natural number  n  if the sum 
of its items is  n .  Write a program to find

(a) a list of all partitions of a given natural  n .  For example, if  n=3  then an acceptable 
answer is  [[3]; [1; 2]; [2; 1]; [1; 1; 1]] .

(b) a list of all sorted partitions of a given natural  n .  For example, if  n=3  then an 
acceptable answer is  [[3]; [1; 2]; [1; 1; 1]] .

(c) the sorted list of all partitions of a given natural  n .  For example, if  n=3  then the answer 
is  [[1; 1; 1]; [1; 2]; [2; 1]; [3]] .

(d) the sorted list of all sorted partitions of a given natural  n .  For example, if  n=3  then the 
answer is  [[1; 1; 1]; [1; 2]; [3]] .

After trying the question, scroll down to the solution.



(a) a list of all partitions of a given natural  n .  For example, if  n=3  then an acceptable 
answer is  [[3]; [1; 2]; [2; 1]; [1; 1; 1]] .

§ Part (a) is subsumed by part (c).

(b) a list of all sorted partitions of a given natural  n .  For example, if  n=3  then an 
acceptable answer is  [[3]; [1; 2]; [1; 1; 1]] .

§ Part (b) is subsumed by part (d).

(c) the sorted list of all partitions of a given natural  n .  For example, if  n=3  then the answer 
is  [[1; 1; 1]; [1; 2]; [2; 1]; [3]] .

§ Given a partition, to get the next partition:  cut off the final item;  increase the new final 
item by  1 ;  join  1s as necessary to make up the right sum (easily determined from the 
item that was cut off).  Let  L: [*[*(nat+1)]]  be a list-of-partitions variable whose final 
value is what we want.  Then the problem is  R , defined as

R = ( Lʹ  is the sorted list of all partitions of  n )
= (∀i, j: 0,..#Lʹ· i<j ⇒ Lʹi<Lʹj)

∧ (∀i: 0,..#Lʹ·(Σ Lʹi) = n)
∧ (∀Q: [*(nat+1)]·(ΣQ)=n ⇒ Q: Lʹ(0,..#Lʹ))

Introduce partition variable  P: [*(nat+1)]  and define
A = ( P  is a partition) ∧ ( L  is the sorted list of all partitions of  n  that precede  P )

= (ΣP)=n
∧ (∀i, j: 0,..#L· i<j ⇒ L i < L j < P)
∧ (∀i: 0,..#L·(Σ L i) = n)
∧ (∀Q: [*(nat+1)]·(ΣQ)=n ∧ Q<P  ⇒  Q: L(0,..#L))

Now the refinements.
R   ⇐   L:= [nil].  P:= [n*1].  A⇒R
A⇒R   ⇐ L:= L;;[P].

if #P < 2 then ok
else P:= P[0;..#P–2] ;; [P(#P–2)+1 ; (P(#P–1)–1)*1].  A⇒R f

Here is a program using loops (Chapter 5);  instead of gathering the partitions into a list, I 
print them (let's say !x  prints the value of  x  and  ?x  reads into variable  x ).

var n, m: int·            n  is the length of  P  and  m  is a temporary 
!“n=”.  ?n.
var P: [n*int]·
for i:= 0,..n do P i:= 1 od.
do for i:= 0,..n do !P i, “ ” od.  !newline.

exit when n<2.
P(n–2):= P(n–2)+1.
m:= n–1.  n:= m + P m – 1.
for i:= m,..n do P i:= 1 od od

The exact execution time is obtained by putting  t:= t+1  in front of the recursive call, and
replace  R  by  tʹ = t + 2n–1–1
replace  A⇒R  by  tʹ = t + Σi: 1,..#P· 2(ΣP[i;..#P])–1

(d) the sorted list of all sorted partitions of a given natural  n .  For example, if  n=3  then the 
answer is  [[1; 1; 1]; [1; 2]; [3]] .

§ Given a sorted partition, to get the next sorted partition:  cut off the final item;  increase 
the new final item by  1  and call this  f ;  join as many  fs as possible without making the 
sum too big;  increase the final item to get the right sum.  This solution is very similar to 
part (c), but the assignment

P:= P[0;..#P–2] ;; [P(#P–2)+1 ; (P(#P–1)–1)*1]
has to be replaced by



d:= P(#P–2) + P(#P–1).  f:= P(#P–2)+1.
P:= P[0;..#P–2] ;; [(div d f – 1)*f ; f + mod d f]

and we have to modify  R  and  A .


