A list of positive integers is called a partition of natural number n if the sum of its items is n. Write a program to find

(a) a list of all partitions of a given natural n. For example, if $n=3$ then an acceptable answer is $[[3]; [1; 2]; [2; 1]; [1; 1; 1]]$.

Part (a) is subsumed by part (c).

(b) a list of all sorted partitions of a given natural n. For example, if $n=3$ then an acceptable answer is $[[3]; [1; 2]; [1; 1; 1]]$.

Part (b) is subsumed by part (d).

(c) the sorted list of all partitions of a given natural n. For example, if $n=3$ then the answer is $[[1; 1; 1]; [1; 2]; [2; 1]; [3]]$.

Given a partition, to get the next sorted partition: cut off the final item; increase the new final item by 1; join 1s as necessary to make up the right sum (easily determined from the item that was cut off). Let $L: [*\{nat+1\}]$ be a list-of-partitions variable whose final value is what we want. Then the problem is R, defined as

$$R \equiv (L' : \text{is the sorted list of all partitions of } n)$$
$$\equiv (\forall i, j: 0,..#L' \cdot i < j \Rightarrow L' i < L' j)$$
$$\land (\forall i: 0,..#L': (\Sigma L i) = n)$$
$$\land (\forall Q: [*\{nat+1\}] \cdot (\Sigma Q) = n \Rightarrow Q: L'(0,..#L'))$$

Introduce partition variable $A: [*\{nat+1\}]$ and define
$$A \equiv (P: \text{is a partition}) \land (L: \text{is the sorted list of all partitions of } n \text{ that precede } P)$$
$$\equiv (\Sigma P) = n$$
$$\land (\forall i, j: 0,..#L \cdot i < j \Rightarrow L i < L j < P)$$
$$\land (\forall i: 0,..#L: (\Sigma L i) = n)$$
$$\land (\forall Q: [*\{nat+1\}] \cdot (\Sigma Q) = n \land Q < P \Rightarrow Q: L(0,..#L))$$

Now the refinements.
$$R \iff L := [\text{nil}]. \quad P := [n*1]. \quad A \Rightarrow R$$
$$A \Rightarrow R \iff L := L ; [P].$$

if $\#P < 2$ then ok
else $P := P[0;..#P–2] :: [P(#P–2)+1;..(P(#P–1)+1)*1]. \quad A \Rightarrow R \ fi$

Here is a program using loops (Chapter 5); instead of gathering the partitions into a list, I print them (let's say !x prints the value of x and ?x reads into variable x).

```
var n, m: int;  
!n = "\ n".

var P: [n*int];
for i := 0,..n do P i := 1 od.
for i := 0,..n do !P i, " " od. !newline.
exit when n<2.
P(n–2) := P(n–2)+1.
m := n–1.  n := m + P m – 1.
for i := m,..n do P i := 1 od od
```

The exact execution time is obtained by putting $t := t+1$ in front of the recursive call, and replace R by $t' = t + 2^n–1$ replace $A \Rightarrow R$ by $t' = t + \Sigma i: 1,..#P: 2(\Sigma P[i;#P])–1$

(d) the sorted list of all sorted partitions of a given natural n. For example, if $n=3$ then the answer is $[[3]; [1; 2]; [2; 1]; [3]]$.

Given a sorted partition, to get the next sorted partition: cut off the final item; increase the new final item by 1 and call this f; join as many fs as possible without making the
sum too big: increase the final item to get the right sum. This solution is very similar to part (c), but the assignment
\[P := P[0;..#P–2] ;; [P(#P–2)+1 ; (P(#P–1)–1)*1] \]
has to be replaced by
\[d := P(#P–2) + P(#P–1). \quad f := P(#P–2)+1. \]
\[P := P[0;..#P–2] ;; [(\text{div } d \ f – 1)*f ; f + \text{mod } d \ f] \]
and we have to modify \(R \) and \(A \).