266
(@)
(b)
(©)
(d)

(partitions) A list of positive integers is called a partition of natural number n if the sum
of its items is n . Write a program to find

a list of all partitions of a given natural n . For example, if n=3 then an acceptable
answer is [[3]; [1; 2]; [2; 1]; [1; 15 1]] .

a list of all sorted partitions of a given natural n . For example, if »n=3 then an
acceptable answer is [[3]; [1; 2]; [1; 1; 1]] .

the sorted list of all partitions of a given natural n . For example, if n=3 then the answer
is [[1; 15 10; [15 2] [25 115 [3]] -

the sorted list of all sorted partitions of a given natural n . For example, if n=3 then the
answeris [[1;1;1];[1;2]; [3]] .

After trying the question, scroll down to the solution.



(@)

(b)

(©

(d)

a list of all partitions of a given natural n . For example, if n=3 then an acceptable
answer is [[3]; [1; 2]; [2; 1]; [1; 1; 11] .
Part (a) is subsumed by part (c).

a list of all sorted partitions of a given natural n . For example, if »n=3 then an
acceptable answer is [[3]; [1; 2]; [1; 1; 1]] .
Part (b) is subsumed by part (d).

the sorted list of all partitions of a given natural n . For example, if n=3 then the answer
is [[1; 1; 10 [15 2] [25 11 [3]] -
Given a partition, to get the next partition: cut off the final item; increase the new final
item by 1; join 1s as necessary to make up the right sum (easily determined from the
item that was cut off). Let L: [*[*(nat+1)]] be a list-of-partitions variable whose final
value is what we want. Then the problem is R , defined as
R (L' is the sorted list of all partitions of 7 )
(Vi,j: 0,.#L" i<j = L'i<L'j)
A (Vi 0,.#L-(Z L'i)=n)
A (YO: [*(nat+1)](EQ)=n = Q: L'(0,.#L"))
Introduce partition variable P: [*(nat+1)] and define
A = (P isapartition) A ( L is the sorted list of all partitions of n that precede P )
(ZP)=n
A (Vi,j:0,.#L i<j=Li<Lj<P)
A (Vi 0,.#L-(ZLi)=n)
A (VO: [*(nat+1)]"(ZQ)=n A Q<P = Q: L(0,.#L))
Now the refinements.
R <= L:=[nil]. P:=[n*1]. A=R
A=R < L:=L3;[P].
if #P < 2 then ok
else P:= P[0;. #P-2] ;; [P#P-2)+1 ; (P(#P-1)-1)*1]. A=Rfi
Here is a program using loops (Chapter 5); instead of gathering the partitions into a list, I
print them (let's say !x prints the value of x and ?7x reads into variable x ).
var n, m: int n is the length of P and m is a temporary
“n=". M.
var P: [n*int]-
for i:=0,.ndo Pi:=1 od.
do fori:=0,.ndo!Pi,“”od. \newline.
exit when n<2.
P(n-2):= P(n-2)+1.
m=n—-1. n=m+Pm-1.
for i:=m,.ndo Pi:=1 od od
The exact execution time is obtained by putting #:=#+1 in front of the recursive call, and
replace R by ¢ =1+ 211
replace A=R by ¢ =t + Zi: 1,.#P- 2CPL5.#P])-1

the sorted list of all sorted partitions of a given natural n . For example, if n=3 then the
answeris [[1;1;1];[1;2]; [3]] .
Given a sorted partition, to get the next sorted partition: cut off the final item; increase
the new final item by 1 and call this f; join as many fs as possible without making the
sum too big; increase the final item to get the right sum. This solution is very similar to
part (c), but the assignment

P:= P[0;. #P-2] ;; [P#P-2)+1 ; (P(#P-1)-1)*1]
has to be replaced by



d:= P#P-2) + P#P-1). fi= P#P-2)+1.
P:= P[0;. #P-2] ;; [(div d f— D)*f; f+ mod d f]
and we have to modify R and A .



