
266 (partitions) A list of positive integers is called a partition of natural number n if the sum
of its items is n . Write a program to find

(a) a list of all partitions of a given natural n . For example, if n=3 then an acceptable
answer is [[3]; [1; 2]; [2; 1]; [1; 1; 1]] .

(b) a list of all sorted partitions of a given natural n . For example, if n=3 then an
acceptable answer is [[3]; [1; 2]; [1; 1; 1]] .

(c) the sorted list of all partitions of a given natural n . For example, if n=3 then the answer
is [[1; 1; 1]; [1; 2]; [2; 1]; [3]] .

(d) the sorted list of all sorted partitions of a given natural n . For example, if n=3 then the
answer is [[1; 1; 1]; [1; 2]; [3]] .

After trying the question, scroll down to the solution.

(a) a list of all partitions of a given natural n . For example, if n=3 then an acceptable
answer is [[3]; [1; 2]; [2; 1]; [1; 1; 1]] .

§ Part (a) is subsumed by part (c).

(b) a list of all sorted partitions of a given natural n . For example, if n=3 then an
acceptable answer is [[3]; [1; 2]; [1; 1; 1]] .

§ Part (b) is subsumed by part (d).

(c) the sorted list of all partitions of a given natural n . For example, if n=3 then the answer
is [[1; 1; 1]; [1; 2]; [2; 1]; [3]] .

§ Given a partition, to get the next partition: cut off the final item; increase the new final
item by 1 ; join 1s as necessary to make up the right sum (easily determined from the
item that was cut off). Let L: [*[*(nat+1)]] be a list-of-partitions variable whose final
value is what we want. Then the problem is R , defined as

R = (Lʹ is the sorted list of all partitions of n)
= (∀i, j: 0,..#Lʹ· i<j ⇒ Lʹi<Lʹj)

∧ (∀i: 0,..#Lʹ·(Σ Lʹi) = n)
∧ (∀Q: [*(nat+1)]·(ΣQ)=n ⇒ Q: Lʹ(0,..#Lʹ))

Introduce partition variable P: [*(nat+1)] and define
A = (P is a partition) ∧ (L is the sorted list of all partitions of n that precede P)

= (ΣP)=n
∧ (∀i, j: 0,..#L· i<j ⇒ L i < L j < P)
∧ (∀i: 0,..#L·(Σ L i) = n)
∧ (∀Q: [*(nat+1)]·(ΣQ)=n ∧ Q<P ⇒ Q: L(0,..#L))

Now the refinements.
R ⇐ L:= [nil]. P:= [n*1]. A⇒R
A⇒R ⇐ L:= L;;[P].

if #P < 2 then ok
else P:= P[0;..#P–2] ;; [P(#P–2)+1 ; (P(#P–1)–1)*1]. A⇒R f

Here is a program using loops (Chapter 5); instead of gathering the partitions into a list, I
print them (let's say !x prints the value of x and ?x reads into variable x).

var n, m: int· n is the length of P and m is a temporary
!“n=”. ?n.
var P: [n*int]·
for i:= 0,..n do P i:= 1 od.
do for i:= 0,..n do !P i, “ ” od. !newline.

exit when n<2.
P(n–2):= P(n–2)+1.
m:= n–1. n:= m + P m – 1.
for i:= m,..n do P i:= 1 od od

The exact execution time is obtained by putting t:= t+1 in front of the recursive call, and
replace R by tʹ = t + 2n–1–1
replace A⇒R by tʹ = t + Σi: 1,..#P· 2(ΣP[i;..#P])–1

(d) the sorted list of all sorted partitions of a given natural n . For example, if n=3 then the
answer is [[1; 1; 1]; [1; 2]; [3]] .

§ Given a sorted partition, to get the next sorted partition: cut off the final item; increase
the new final item by 1 and call this f ; join as many fs as possible without making the
sum too big; increase the final item to get the right sum. This solution is very similar to
part (c), but the assignment

P:= P[0;..#P–2] ;; [P(#P–2)+1 ; (P(#P–1)–1)*1]
has to be replaced by

d:= P(#P–2) + P(#P–1). f:= P(#P–2)+1.
P:= P[0;..#P–2] ;; [(div d f – 1)*f ; f + mod d f]

and we have to modify R and A .

